Robust Feature Based Automated Multi View Human Action Recognition System Using Machine Learning
DOI:
https://doi.org/10.32628/IJSRSET1961166Keywords:
MoSIF, BoWs, STIP, EMD, SVM, LST Feature, BI-Linear Interpolation , Classifier, K-Nearest Neighbour, Feature ExtractionAbstract
Automated human action Recognition has the potential to play an important role in Public security. In this project it compares three practical, reliable and generics systems for multiview video based human action recognition namely the nearest classifier, Gaussian mixture model classifier and nearest mean classifier.
References
- B. Ma, L. Huang, J. Shen, and L. Shao, “Discriminative tracking using tensor pooling,” IEEE Trans. Cybern., to be published,doi: 10.1109/TCYB.2015.2477879.
- L. Liu, L. Shao, X. Li, and K. Lu, “Learning spatio-temporal representationsfor action recognition: A genetic programming approach,” IEEETrans. Cybern., vol. 46, no. 1, pp. 158–170, Jan. 2016.
- A. Khan, D. Windridge, and J. Kittler, “Multilevel Chinese takeawayprocess and label-based processes for rule induction in the contextof automated sports video annotation,” IEEE Trans. Cybern., vol. 44,no. 10, pp. 1910–1923, Oct. 2014.
- H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, “Evaluationof local spatio-temporal features for action recognition,” in Proc. Brit.Mach. Vis. Conf., London, U.K., 2009, pp. 124.1–124.11.
- L. Shao, X. Zhen, D. Tao, and X. Li, “Spatio-temporal Laplacianpyramid coding for action recognition,” IEEE Trans. Cybern., vol. 44,no. 6, pp. 817–827, Jun. 2014.
- M.-Y. Chen and A. Hauptmann, “MoSIFT: Recognizing human actionsin surveillance videos,” School Comput. Sci., Carnegie Mellon Univ.,Pittsburgh, PA, USA, Tech. Rep. CMU-CS-09-161, 2009.
- M. Yu, L. Liu, and L. Shao, “Structure-preserving binary representationsfor RGB-D action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,to be published, doi: 10.1109/TPAMI.2015.2491925.
- L. Shao, L. Liu, and M. Yu, “Kernelized multiview projection for robust action recognition,” Int. J. Comput. Vis., 2015,doi: 10.1007/s11263-015-0861-6.
- C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vectormachines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,Apr. 2011.
- Y. Han et al., “Semisupervised feature selection via spline regressionfor video semantic recognition,” IEEE Trans. Neural Netw. Learn. Syst.,vol. 26, no. 2, pp. 252–264, Feb. 2015.
Downloads
Published
2019-04-30
Issue
Section
Research Articles
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
Paruchuri Yogesh, R. Dillibabu, Palaniappan P, Prof. L. Ashok Kumar, Prof. Navarajan "Robust Feature Based Automated Multi View Human Action Recognition System Using Machine Learning" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099,
Volume 6, Issue 2, pp.52-58, March-April-2019. Available at doi : https://doi.org/10.32628/IJSRSET1961166