Parametric Bootstrap for Estimating Mean Square Error of Proportion in Small Area Estimation
DOI:
https://doi.org/10.32628/IJSRSET19613Keywords:
bootstrap, mean square error, parametric, small area estimationAbstract
Small area estimation (SAE) is an important alternative method to obtain information in a small area when the sample size is small. In this paper, we proposed a parametric bootstrap method to estimate mean square error (MSE) of proportion based on area unit levels. The purpose of this research has been focused on applying the parametric bootstrap method to estimate MSE in SAE for zero inflated binomial models (SAE ZIB). The results showed that the bootstrap method produced a smaller MSE than the direct estimation, implying that the SAE ZIB performs better when compared to the direct estimation
References
- Sadik K. 2009. Metode prediksi tak-bias linier terbaik dan bayes berhirarki untuk pendugaan area kecil berdasarkan model state space [disertasi]. Bogor (ID): Institut Pertanian Bogor.
- Benavent R, Morales D. 2016. Multivariate Fay-Herriot models for small area estimation. Computational Statistics & Data Analysis. 94: 372-390.
- Manteiga G, Lambordia MJ, Molina I, Morales D, Santamaria L. 2007. Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model. Computational Statistics & Data Analysis. 51: 2720-2733.
- Bodromurti W. 2017. Zero inflated binomial models in small area estimation with application to infant mortality data in Indonesia [tesis]. Bogor (ID): Institut Pertanian Bogor.
- Chandra H, Sud UC. 2012 small area estimation for zero-inflated data. Communications in Statistics – Simulation and Computation. 41(5): 632 – 643.
- Krieg S, Booontra HJ, Smeets M. 2015. Small area estimation with zero-inflated data – a simulation study. Statisitics Netherlands, Discussion paper. 1: 1 – 45.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.