Extrication of Apriori Algorithm using Association Rules on Medical Data sets
DOI:
https://doi.org/10.32628/IJSRSET19627Keywords:
MEDICAL Data Mining, Association Mining, APRIORI-Growth Algorithm, Frequent Data SetsAbstract
During the process of mining frequent item sets, when minimum support is little, the production of candidate sets is a kind of time-consuming and frequent operation in the mining algorithm. The APRIORI growth algorithm does not need to produce the candidate sets, the database which provides the frequent item set is compressed to a frequent pattern tree (or APRIORI tree), and frequent item set is mining by using of APRIORI tree. These algorithms considered as efficient because of their compact structure and also for less generation of candidates item sets compare to Apriori and Apriori like algorithms. Therefore this paper aims to presents a basic Concepts of some of the algorithms (APRIORI-Growth, COFI-Tree, CT-PRO) based upon the APRIORI- Tree like structure for mining the frequent item sets along with their capabilities and comparisons. Data mining implementation on MEDICAL data to generate rules and patterns using Frequent Pattern (APRIORI)-Growth algorithm is the major concern of this research study. We presented in this paper how data mining can apply on MEDICAL data.
References
- R.Agrawal, R.Srikant, “Fast algorithms for mining association rules”, Proceedings of the 20th Very Large DataBases Conference (VLDB’94), Santiago de Chile, Chile, 1994, pp. 487-499.
- J.Han, J.Pei and Y.Yin., “Mining frequent patterns without candidate Generation”, in: Proceeding of ACM SIGMOD International Conference Management of Data, 2000, pp.1-12 .
- Jiawei Han, M.Kamber, “Data Mining-Concepts and Techniques”, Morgan Kanufmann Publishers, Sam Francisco, 2009.
- R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc. 1993 ACMSIGMOD Int. Conf. Management of Data, pages 207–216, Washington, D.C., May 1993.
- M.-L. Antonie and O. R. Za¨?ane. Text document categorization by term association. In IEEE International Conference on Data Mining, pages 19–26, December 2002.
- J. Hipp, U. Guntzer, and G. Nakaeizadeh. Algorithms for association rule mining - a general survey and comparison. ACM SIGKDD Explorations, 2(1):58–64, June 2000.
- M. El-Hajj and O. R. Za¨?ane. Inverted matrix: Efficient discovery of frequent items in large datasets in the context of interactive mining. In Proc. 2003 Int’l Conf. on Data
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.