Numerical Study and Finite Element Analysis of Submerged Cylindrical Pressure Hull

Authors

  • Ageel Alogla  Department of Mechanical Engineering, Faculty of Engineering, Taif University, Al-hawyah, P.O. Box 888, Taif 26571, Saudi Arabia

DOI:

https://doi.org/10.32628/IJSRSET207561

Keywords:

Composites, Pressure hulls, Buoyancy Factor, Hydrostatic Pressure, Finite element, ANSYS

Abstract

Weight and volume are a direct impact on diving which is an important indicator of the overall performance of the deep-sea submersible structure. In order to increase the payload, improve endurance, reduce energy consumption, improve work efficiency, and therefore must accordingly reduce the total weight of the submersible. The design of underwater vehicles with minimum buoyancy factor is a major requirement from the underwater vehicles design point of view. The composite material pressure hull is a new concept due to the excellent structural performance. Therefore, in the present study, a comparison between three different pressure hulls with the same volume and various materials subjected to the same hydrostatic pressure will be investigated. The first, model was constructed from carbon fibre, while the second one constructed from steel (HY100) and the last one constructed from Titanium alloy. The finite element analysis (FEA) was executed using ANSYS. The results illustrated that the best buoyancy factor and the minimum mass occurred in the case of the pressure hull constructed from carbon fibre.

References

  1. B. Ca; Liu, Y.; Liu, Z.; Tian, X.; Ji, R.; Li, H.2011. Reliability-based Load and Resistance Factor Design of Composite Pressure Vessel Under External Hydrostatic Pressure. Composite Structures.(2011) 93, 2844-2852, doi:https://doi.org/10.1016/j.compstruct.2011.05.020.
  2. E. Fathallah; Helal, M.2016. Optimum Structural Design of Deep Submarine Pressure hull to achieve Minimum Weight. The International Conference on Civil and Architecture Engineering.(2016) 11, 1-22, doi:10.21608/iccae.2016.43445.
  3. E. Fathallah; Helal, M.2019. Finite element modelling and multi-objective optimization of composite submarine pressure hull subjected to hydrostatic pressure. IOP Conference Series: Materials Science and Engineering.(2019) 683, 012072, doi:10.1088/1757-899x/683/1/012072.
  4. E. Fathallah; Qi, H.; Tong, L.; Helal, M.2014. Design Optimization of Composite Elliptical Deep-Submersible Pressure Hull for Minimizing the Buoyancy Factor. Advances in Mechanical Engineering.(2014) DOI: 10.1155/2014/987903, doi:DOI: 10.1155/2014/987903.
  5. E. Fathallah; Qi, H.; Tong, L.; Helal, M.2014. Multi-Objective Optimization of Composite Elliptical Submersible Pressure Hull for Minimize the Buoyancy Factor and Maximize Buckling Load Capacity. Applied Mechanics and Materials.(2014) 578, 75-82, doi:DOI: 10.4028/www.scientific.net/AMM.578-579.75.
  6. E. Fathallah; Qi, H.; Tong, L.; Helal, M.2014. Optimal Design Analysis of Composite Submersible Pressure Hull. Applied Mechanics and Materials.(2014) 578, 89-96, doi:https://doi.org/10.4028/www.scientific.net/AMM.578-579.89.
  7. E. Fathallah; Qi, H.; Tong, L.; Helal, M.2015. Design optimization of lay-up and composite material system to achieve minimum buoyancy factor for composite elliptical submersible pressure hull. Composite Structures.(2015) 121, 16-26, doi:DOI: 10.1016/j.compstruct.2014.11.002.
  8. T. Gao; Cho, J.-U.2015. A study on damage and penetration behaviour of carbon fiber reinforced plastic sandwich at various impacts. International Journal of Precision Engineering and Manufacturing.(2015) 16, 1845-1850, doi:10.1007/s12541-015-0240-9.
  9. M. Helal; Fathallah, E.2019. Multi-objective optimization of an intersecting elliptical pressure hull as a means of buckling pressure maximizing and weight minimization. Materials Testing.(2019) 61, 1179-1191, doi:10.3139/120.111442.
  10. M. Helal; Huang, H.; Wang, D.; Fathallah, E.2019. Numerical Analysis of Sandwich Composite Deep Submarine Pressure Hull Considering Failure Criteria. Journal of Marine Science and Engineering.(2019) 7, 377.
  11. Z. Jian; Xinlong, Z.; Weibo, W.; Wenxian, T.2014. Overviews of Investigation on Submersible Pressure Hulls. Advances in Natural Science.(2014) 7, 1-8, doi:DOI:10.3968/6129.
  12. G. C. Lee; Kweon, J. H.; Choi, J. H.2013. Optimization of Composite Sandwich Cylinders for Underwater Vehicle Application. Composite Structures.(2013) 96, 691-697, doi:https://doi.org/10.1016/j.compstruct.2012.08.055.
  13. W. Li; Ping, X. Z.; Tao, Z.; Guang, L. T.2010. Optimum Design of Spherical Deep-submerged Pressure Hull. Journal of Ship Mechanics.(2010) 14, 509-515.
  14. C. C. Liang; Chen, H. W.; Jen, C. Y.2003. Optimum Design of Filament-wound Multilayer Sandwich Submersible Pressure Hulls. Ocean Engineering.(2003) 30, 1941-1967, doi:DOI: 10.1016/S0029-8018(03)00044-1.
  15. C. C. Liang; Shiah, S. W.; Jen, C. Y.; Chen, H. W.2004. Optimum Design of Multiple Intersecting Spheres Deep-submerged Pressure Hull. Ocean Engineering.(2004) 31, 177-199, doi:DOI: 10.1016/S0029-8018(03)00120-3.
  16. T. Messager; Pyrz, M.; Gineste, B.; Chauchot, P.2002. Optimal Laminations of Thin Underwater Composite Cylindrical Vessels. Composite Structures.(2002) 58, 529-537, doi:https://doi.org/10.1016/S0263-8223(02)00162-9.
  17. D. Pattison. Design of Submarine Structures; SSP74: Defence Procurement Agency Sea Technology Group, Bristol., 2001.
  18. C. T. F. Ross.2005. A conceptual Design of an Underwater Missile Launcher. Ocean Engineering (2005) 32, 85-99, doi:https://doi.org/10.1016/j.oceaneng.2004.04.008.
  19. C. T. F. Ross.2006. A conceptual Design of an Underwater Vehicle. Ocean Engineering.(2006) 33, 2087-2104.
  20. C. T. F. Ross. Pressure Vessels External Pressure Technology, Second edition ed.; British Library, 2011.
  21. A. D. Shankmun.1968 Materials for pressure hull present and future. Naval Engineers Journal.(1968 ), 972-979.
  22. K. Shen; Pan, G.2019. Buckling Optimization of Composite Cylinders for Underwater Vehicle Applications Under Tsai-Wu Failure Criterion Constraint. Journal of Shanghai Jiaotong University (Science).(2019) 10.1007/s12204-019-2087-1, doi:10.1007/s12204-019-2087-1.
  23. Smith; Stuart, C. Design of marine structures in composite materials; Elsevier London, 1990.
  24. M. J. Smith; Macadam, T.; MacKay, J. R.2015. Integrated modelling, design and analysis of submarine structures. Ships and Offshore Structures.(2015) 10, 349-366, doi:DOI: 10.1080/17445302.2014.937058.
  25. U. Taetragool; Shah, P. H.; Halls, V. A.; Zheng, J. Q.; Batra, R. C.2017. Stacking sequence optimization for maximizing the first failure initiation load followed by progressive failure analysis until the ultimate load. Composite Structures.(2017) 180, 1007-1021, doi:https://doi.org/10.1016/j.compstruct.2017.08.023.
  26. L. Tao; Qinan, X.; Jianping, C.; Min, Q.2000. Design of Submersible Vehicles in Sandwich Composites. IEEE.(2000), 279 - 283.
  27. S. W. Tsai; Wu, E. M.1971. A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials  (1971) 5, 58-80.
  28. J. Zhang; Zhang, M.; Tang, W.; Wang, W.; Wang, M.2017. Buckling of spherical shells subjected to external pressure: A comparison of experimental and theoretical data. Thin-Walled Structures.(2017) 111, 58-64, doi:https://doi.org/10.1016/j.tws.2016.11.012.
  29. M. Zhang; Tang, W.; Wang, F.; Zhang, J.; Cui, W.; Chen, Y.2017. Buckling of bi-segment spherical shells under hydrostatic external pressure. Thin-Walled Structures.(2017) 120, 1-8, doi:https://doi.org/10.1016/j.tws.2017.08.017.
  30. Fathallah, E.; Qi, H.; Tong, L.; Helal, M.2014. Optimal Design Analysis of Composite Submersible Pressure Hull. Applied Mechanics and Materials (2014), 578, 89-96, doi:https://doi.org/10.4028/www.scientific.net/AMM.578-579.89.

Downloads

Published

2020-10-30

Issue

Section

Research Articles

How to Cite

[1]
Ageel Alogla "Numerical Study and Finite Element Analysis of Submerged Cylindrical Pressure Hull" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 7, Issue 5, pp.381-388, September-October-2020. Available at doi : https://doi.org/10.32628/IJSRSET207561