Identification and Effective Summary Extraction with Deduplication of Data in News Articles
DOI:
https://doi.org/10.32628/IJSRSET207620Keywords:
Multi-Document Summarization, Clustering Based, Extractive and Abstractive approach, Ranked Based, LDA Based, Natural Language Processing.Abstract
Text summary, which is the most prominent application for data pressure, is provided for natural language processing. Content rundown is a process for the summary of the unique archive measurement by reducing the number of vital data from a uniquely reported report. In less time, a need emerges that the development of information increases greatly on the World Wide Web or on desktops of customers so that the multi-document overview is the best way of summarising it in less time. This paper presents an examination of existing procedures with the odds of stressing the need for an intelligent multi-document resumer.
References
- Van Britsom, Daan, Antoon Bronselaer, and Guy De Tre. "Using data merging techniques for generating multi-document summarizations." in IEEE trans. On fuzzy systems, pp 1 -17, 2013.
- Bagal kotkar, A., Kandelwal, A., Pandey, S., &Kamath, S. S. (2013, August). A Novel Technique for Efficient Text Document Summarization as a Service.InAdvances in Computing and Communications (ICACC), 2013 Third International Conference on (pp. 50-53). IEEE.
- Gupta, V. K., &Siddiqui, T. J. (2012, December). Multi-document summarization using sentence clustering. In Intelligent Human Computer Interaction (IHCI), 2012 4th International Conference on (pp. 1-5).IEEE.
- Guran, A., N. G. Bayazit, and E. Bekar. "Automatic summarization of Turkish documents using non-negative matrix factorization." In Innovations in Intelligent Systems and Applications (INISTA), 2011 International Symposium on, pp. 480-484.IEEE, 2011.
- Shashi Shekhar K V Arya, Rohit A, Rakesh K “A WEBIR Crawling Framework for Retrieving Highly Relevant Web Documents: Evaluation Based on Rank Aggregation and Result Merging Algorithms” in Conf. on Computational Intelligence and Communication Systems, pp 83-88 ,2011.
- Manjula.K.S “Extracting Summary from Documents Using K-Mean Clustering Algorithm” in IEEE IJARCCE, pp 3242-3246, 2013.
- Harshad Jain et. al. “Context Sensitive Text Summarization Using K Means Clustering Algorithm” IJSCE, pp no 301-304, 2012.
- García-Hernández, René Arnulfo, and YuliaLedeneva. "Word Sequence Models for Single Text Summarization."In Advances in Computer-Human
- Ferreira, R., de Souza Cabral, L., Lins, R. D., Pereira e Silva, G., Freitas, F., Cavalcanti, G. D .& Favaro, L. (2013). Assessing sentence scoring techniques for extractive text summarization. Expert systems with applications, 40(14), 5755-5764.
- Liu Na et al.“Mixture of Topic Model for Multi-document Summarization” In 2014 26th Chinese Control and Decision Conference (CCDC), IEEE, pp no 5168-5172.
- Rachit Arora et al. “Latent Dirichlet Allocation and Singular Value Decomposition based Multi-Document Summarization” In2008 Eighth IEEE International Conference on Data Mining, pp no 713-718.
- Hongyan Lill et al. “Multi-document Summarization based on Hierarchical Topic Model” HongyanLill, pp no 88-91.
- Liu, N., Tang, X. J., Lu, Y., Li, M. X., Wang, H. W., & Xiao, P. (2014, July). Topic-Sensitive Multi-document Summarization Algorithm. In Parallel Architectures, Algorithms and Programming (PAAP), 2014 Sixth International Symposium on (pp. 69-74). IEEE.
- Yan, Su, and Xiaojun Wan. "SRRank: Leveraging Semantic Roles for Extractive Multi-Document Summarization."
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.