Characterization of Al6061-Based Hybrid MMCs reinforced with TiC and Graphene

Authors

  • Veerashetti S. Chavan  Selection Grade Lecturer, Mechanical Engineering Dept., A.P.S. Polytechnic, Kanakapur Main Road, Somanahalli, Bangaluru South, Bangaluru-560082, Karnataka, India.
  • Raviprakash T N  Senior Scale Lecturer, Mechanics Engineering Dept. Government School of Mines KGF, Karnataka, India.
  • K Mahadevaswamy  Senior scale lecturer, Mechanical Engineering (HPT), S J Govt. Polytechnic, Bengaluru, Karnataka, India.

Keywords:

Al6061-based hybrid MMCs, Graphene reinforcement, Titanium carbide (TiC), Mechanical properties, Stir casting

Abstract

This study investigates the mechanical properties of Al6061-based hybrid metal matrix composites (MMCs) reinforced with a fixed graphene content of 0.5 wt% and varying titanium carbide (TiC) content at 1 wt%, 2 wt%, and 3 wt%. The composites were fabricated using the stir casting process, which ensures uniform dispersion of reinforcements within the aluminum matrix. The mechanical properties, including hardness, tensile strength, and ductility, were systematically evaluated following ASTM standards to assess the impact of TiC reinforcement at different weight fractions. The results indicate that the addition of TiC significantly enhances the hardness and tensile strength of the composites due to the formation of a refined grain structure and improved load transfer efficiency. However, ductility exhibits an inverse relationship with TiC content, as higher reinforcement levels contribute to increased brittleness.

References

  1. Kim, J., Im, H., Kim, J.-M., & Kim, J. (2012). Thermal and electrical conductivity of Al(OH)? covered graphene oxide nanosheet/epoxy composites. Journal of Materials Science, 47(3), 1418-1426. https://doi.org/10.1007/s10853-011-5922-9
  2. Muscat, D., & Drew, R. A. L. (1993). Effect of pore size on the infiltration kinetics of aluminum in titanium carbide preforms. Metallurgical Transactions A, (pp. 185-194). https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027191689
  3. Bastwros, M., Kim, G.-Y., Zhang, K., & Wang, S. (2013). Fabrication of graphene reinforced aluminum composite by semisolid processing. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2B. https://doi.org/10.1115/IMECE2013-63715
  4. Fan, Y., Jiang, W., & Kawasaki, A. (2012). Highly conductive few-layer graphene/Al?O? nanocomposites with tunable charge carrier type. Advanced Functional Materials, 22(18), 3882-3889. https://doi.org/10.1002/adfm.201200632
  5. Vyletel, G. M., Allison, J. E., & Van Aken, D. C. (1995). The effect of matrix microstructure on cyclic response and fatigue behavior of particle-reinforced 2219 aluminum: Part I. Room temperature behavior. Metallurgical and Materials Transactions A, 26(12), 3143-3154. https://doi.org/10.1007/BF02669443
  6. Konakov, V. G., Ovid'ko, I. A., Borisova, N. V., Solovyeva, E. N., Golubev, S. N., Kurapova, O. Y., Novik, N. N., & Archakov, I. Y. (2014). Synthesis of the precursor for aluminum-graphene composite. Reviews on Advanced Materials Science, 39(1), 41-47. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920841134
  7. Karantzalis, A. E., Wyatt, S., & Kennedy, A. R. (1997). The mechanical properties of Al-TiC metal matrix composites fabricated by a flux-casting technique. Materials Science and Engineering: A, 237(2), 200-206. https://doi.org/10.1016/S0921-5093(97)00290-6
  8. Nukami, T., & Flemings, M. C. (1995). In situ synthesis of TiC particulate-reinforced aluminum matrix composites. Metallurgical and Materials Transactions A, 26(7), 1877-1884. https://doi.org/10.1007/BF02670775
  9. Ma, P., Jin, Z., Guo, J.-N., Pan, H.-L., Liu, X.-Y., Ye, T.-C., Wang, H., & Wang, G.-Z. (2012). Chemical vapour deposition graphene radio-frequency field-effect transistors. Chinese Physics Letters, 29(5), 057302. https://doi.org/10.1088/0256-307X/29/5/057302
  10. Zhang, E., Zeng, S., Zeng, X., & Li, Q. (1995). Study on synthesis of TiC in Al/TiC composite materials. Fenmo Yejin Jishu/Powder Metallurgy Technology, 13(3), 170-173. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029350408
  11. Yu, H., Chen, X., Zhang, H., Xu, X., Hu, X., Wang, Z., Wang, J., Zhuang, S., & Jiang, M. (2010). Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide. ACS Nano, 4(12), 7582-7586. https://doi.org/10.1021/nn102280m
  12. Jiang, W. H., Song, G. H., Han, X. L., He, C. L., & Ru, H. C. (1997). Synthesis of TiC/A1 composites in liquid aluminium. Materials Letters, 32(2-3), 63-65. https://doi.org/10.1016/S0167-577X(97)00011-6
  13. Ashwath, P., & Anthony Xavior, M. (2014). The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Engineering, 97, 1027-1032. https://doi.org/10.1016/j.proeng.2014.12.380
  14. Khatri, S., & Koczak, M. (1993). Formation of TiC in in situ processed composites via solid-gas, solid-liquid, and liquid-gas reaction in molten AlTi. Materials Science and Engineering A, 162(1-2), 153-162. https://doi.org/10.1016/0921-5093(90)90040-A
  15. Song, H.-Y., & Zha, X.-W. (2010). Mechanical properties of Ni-coated single graphene sheet and their embedded aluminum matrix composites. Communications in Theoretical Physics, 54(1), 143-147. https://doi.org/10.1088/0253-6102/54/1/27

Downloads

Published

2015-12-30

Issue

Section

Research Articles

How to Cite

[1]
Veerashetti S. Chavan, Raviprakash T N, K Mahadevaswamy "Characterization of Al6061-Based Hybrid MMCs reinforced with TiC and Graphene " International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 6, pp.667-671, November-December-2015.