Biomimetics Integrated Nanoscience in Dental Tissue Regeneration : A Review

Authors

  • Dr. Sonam Gehi  Post graduate student, Department of Prosthodontics, Govt. College of Dentistry, Indore, Madhya Pradesh, India
  • Dr. Mayank Vagadia  Post graduate student, Department of Prosthodontics, Govt. College of Dentistry, Indore, Madhya Pradesh, India
  • Dr. Deshraj Jain  Professor and Head, Department of Prosthodontics, Govt. College of Dentistry, Indore, Madhya Pradesh, India
  • Dr. Alka Gupta  Professor, Department of Prosthodontics, Govt. College of Dentistry, Indore, Madhya Pradesh, India
  •   

DOI:

https://doi.org//10.32628/IJSRSET218344

Keywords:

Nanotechnology, Biomimetics, Bioengineer, Regeneration

Abstract

At a fundamental level, nanotechnology helps to manipulate individual atoms and molecules to produce novel structures with unique properties or improved properties. It involves the production. and applications of physical, chemical, and biological systems and materials at a size scale ranging 1-100 nm. Even though nanotechnology was first introduced over half a century ago, its progress has been slow, but in the last decade, nanotechnology has caught the imagination of scientists and the general public. Nanotechnology offers us the ability to design materials with totally new desirable characteristics Nanotechnology can be approached in two ways: "top-down" and "bottom-up" approaches .Nature uses the bottom-up approach and builds diverse structures in biological systems. The complexity and functionality of these structures is truly amazing. If we can control in fine detail the way in which these structures can be produced in the same way as nature does, remarkable and rapid advances can be made in the field of medicine and dentistry. Nanomaterials will be used far more widely and will yield superior properties and when com bined with biotechnology, laser and digital guided surgery will thus provide excellent dental care. Biomimetics and nanotechnology have given us the knowledge to bioengineer lost tooth and regenerate dental structures. In this review article, recent progress in field of nanotechnology integrated dental tissue regeneration and their potential clinical uses are described.

References

  1. R. Langer, J.P. Vacanti, Tissue engineering. Science 260 (1993) 920-926.
  2. S. Yildirim. S.Y. Fu, K. Kim, H. Zhou, C.H. Lee. A. Li. et al., Tooth regeneration: a revolution stomatology and evolution in regenerative medicine, Int. J. Oral Sci. 3 (2011) 107-116.
  3. R.P. Feynman. There is plenty of room at the bottom. Eng. Sci. 23 (1960) 22-36 and <www.zyvex.com/nanotech/feynman.html/> (1959)
  4. N. Tanaguchi. On the basic concept of nanotechnology, in: 1974 Proc. ICPE.
  5. B. Bushan. Springer Handbook of Nanotechnology. 2003, 147-180.
  6. S.M. Warren, K.D. Fong, C.M. Chen, E.G. Loboa, C.M. Cowan, H.P. Lorenz, et al., Tools and techniques for craniofacial tissue engineering. Tissue Eng. 9 (2003) 187-200.
  7. L.J. Zhang, T.J. Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration.Nano Today 4 (2009) 66-80.
  8. V.J. Chen, P.X. Ma, Biomaterials 25 (2004) 2065.
  9. J.R. Venugopal, S. Low, A.T. Choon, A.B. Kumar, S. Ramakrishna, Artif. Organs 32 (2008) 388.
  10. G. Colon, B.C. Ward, TJ. Webster. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2, J. Biomed. Mater. Res. A 78 (2006) 595-604.
  11. T.J. Webster, E.L. Hellenmeyer, R.L. Price, Increased osteoblast functions on theta + delta nanofiber alumina, Biomaterials 26 (2005) 953-960.
  12. I. Degasne, M.F. Baslé, V. Demais, G. Huré, M. Lesourd, B. Grolleau, et al., Calcified Tissue Int. 64 (1999) 499.
  13. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, J. Biomed. Mater. Res. 51 (2000) 475.
  14. M. Sato, M.A. Sambito, A. Aslani, N.M. Kalkhoran, E.B. Slamovich, TJ. Webster, Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium, Biomaterials 27 (2006) 2358-2369.
  15. R. Smeets, G. Jelitte, M. Heiland, A. Kasaj. M. Grosjean, D. Riediger, et al., Hydroxylapatit Knochenersatzmaterial (Ostim) bei der Sinusbodenelevation, Schweiz Monatsschr. Zahnmed. 118 (2008) 203-208.
  16. C.K.G. Spies, S. Schnürer, T. Gotterbarm, S. Breusch, The efficacy of Biobon and Ostim within metaphyseal defects using the Göttinger Minipig, Arch. Orthop. Trauma Surg. 129 (2009) 979-988.
  17. Y. Zhang, v.J. Reddy, S.Y. Wong, X. Li, B. Su, S. Ramakrishna, et al. Enhanced biomineralisation in osteoblasts on novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/ chitosan, Tissue Eng Part A 16 (2010) 1949-1960
  18. E. Kon. M. Delcogliano, G. Filardo, D. Pressato, M. Busacca, B. Grigolo, et al., A novel nanocomposite multilayered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41 (2010) 693-701
  19. C. Erisken. D.M. Kalyon. H. Wang, C. Ornek-Ballanco, 1. Xu, Osteochondral tissue formation through adipose derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and Beta-glycerophosphate concentrations, Tissue Eng. Part A 17 (2011) 1239-1252.
  20. F.M. Chen, J. Zhang, M. Zhang, Y. An, F. Chen, ZF. Wu. A review on endogenous regenerative technology in periodontal regenerative medicine, Biomaterials 31 (2010) 7892-7927.
  21. P.X. Ma, Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 60 (2008) 184-198.
  22. S. Srinivasan, R. Jayasree, K.P. Chennazhi. S.V. Nair, R. Jayakumar, Biocompatible alginate/nano bio active glass ceramic composite scaffolds for periodontal tissue regeneration, Carbohydr. Polym. 87 (2012) 274-283.
  23. F. Yang. S.K. Both, X. Yang, X.F Walboomers. JA. Jansen, Development of an electrospun nano-apatite/ PCL composite membrane for GTR/GBR application. Acta Biomater. 5 (9) (2009) 3295-3304
  24. Z. Yuan, H. Nie. S. Wang, C.H. Lee, A. Li. S.Y. Fu, et al., Biomaterial selection for tooth regeneration. Tissue Eng. Part B Rev. 17 (2011) 373-388.
  25. A.G. Fincham. J. Moradian-Oldak, J.P. Simmer. The structural biology of the developing dental enamel matrix. J. Struct. Biol. 126 (1999) 270-299
  26. H.F. Chen, B.H. Clarkson, K. Sun, J.F. Mansfield, Self-assembly of synthetic hydroxyaptite nanorods into enamel prism like structure. J. Colloid Interface Sci. 188 (2005) 97-103
  27. L Li, C. Mao, J. Wang, X. Xu, H. Pan, Y. Deng, et al., Bio-inspired enamel repair via Giu-directed assembly of apatite nanoparticle: an approach to biomaterials with optimal characteristic, Adv. Mater. 23 (2011),4695-4701.
  28. M. Hannig, C. Hannig, Nanomaterials in preventive dentistry. Nat. Nanotechnol. 5 (2010) 565-569
  29. S. Huang. S. Gao, L. Cheng, H. Yu, Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study, Caries Res, 45 (2011) 460-468.
  30. A.W. Xu, Y.R. Ma, H. Colfen, Biomimetic mineralization, J. Mater. Chem. 17 (2007) 415-449.
  31. L. Li, H.H. Pan, J.H. Tao, X.R. Xu, C.Y. Mao, X.H. Gu, et al., Repair of enamel by using hydroxyapatite nanoparticles as the building blocks, J. Mater. Chem. 18 (2008) 4079-4084.
  32. S. Huang, S. Guo, L. Cheng, H. Yu, Combined effects of nano-hydroxyapatite and Galla chinensis remineralization of initial enamel lesion in vitro, J. Dent. 38 (2010) 811-819.
  33. NJ. Cochrane, F. Cai, N.L. Huq. M.F. Burrow, E.C. Reynolds, New approaches to enhanced reminerali zation of tooth enamel, J. Dent. Res. 89 (2010) 1187-1197.
  34. S. Nakashima, M. Yoshie, H. Sano, A. Bahar, Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro, J. Oral Sci. 51 (2009) 69-77.
  35. Y.W. Hong, J.H. Kim, B.H. Lee. Y.K. Lee, B.J. Choi, J.H. Lee, et al., The effect of nano-sized 3-tricalcium phosphate on remineralization in glass ionomer dental luting cement. Key Eng. Mater. 361-363 (2008) 861-864
  36. K. Kawasaki, J. Ruben, I. Stokroos, O. Takagi, J. Arends., The remineralization of EDTA-treated human dentine, Caries Res. 33 (1999) 275-280.
  37. M. Vollenweider, TJ. Brunner, S. Knecht, R.N. Grass, M. Zehnder, T. Imfeld, et al., Remineralization of human dentin using ultrafine bioactive glass particles, Acta Biomater. 3 (2007) 936-943.
  38. F.R. Tay, D.H. Pashley, Biomimetic remineralization of resin-bonded acid-etched dentin, J. Dent. Res. 88 (2009) 719-724
  39. V.T. Sakai. Z. Zhang, Z. Dong. K.G. Neiva, M. Machado, S. Shi, et al., SHED differentiate into functional odontoblast and endothelium, J. Dent. Res. 89 (2010) 791-796.
  40. V. Rosa. A. Della Bona, B.N. Cavalcanti, J.E. Nör, Tissue engineering: from research to dental clinics, Dent. Mater. 28 (2012) 341-348.
  41. K.M. Galler, A. Cavender, V. Yuwono, H. Dong, S. Shi. G. Schmalz, et al., Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells, Tissue Eng. Part A 14 (2008) 2051-2058.

Downloads

Published

2021-06-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. Sonam Gehi, Dr. Mayank Vagadia, Dr. Deshraj Jain, Dr. Alka Gupta, , " Biomimetics Integrated Nanoscience in Dental Tissue Regeneration : A Review, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 8, Issue 3, pp.289-297, May-June-2021. Available at doi : https://doi.org/10.32628/IJSRSET218344