Thermal and Economic analysis of Solar Organic Rankine Cycle

Authors

  • Akash Anilkumar Bhavsar  Research Scholar, Madhav University and Assistant Professor, GSFC University, Vadodara, Gujarat, India
  • Dr. Sadanand Namjoshi  Associate Professor, Madhav University, Pindwara, Rajasthan, India

DOI:

https://doi.org//10.32628/IJSRSET2196137

Keywords:

Organic Rankine Cycle, Solar Thermal Collector, Concentrated Solar Power System, Solar-Coal based Hybrid System.

Abstract

The use of solar thermal energy for electricity generation is a clean and sustainable way to cover the increasing energy needs of our society. The most mature technology for capturing solar energy in high temperature levels is the Parabolic Trough Collector. In this study, an Organic Rankine Cycle coupled with Parabolic Trough Collector is analysed for two approaches. First is to develop a hybrid cycle in which the Parabolic Trough Collector field is combined with Traditional Steam Rankine Cycle without storage tank having boiler as a heat exchanger for 25MW power generation at GNFC, Bharuch. And the second approach is to develop an Organic Rankine cycle coupled with Concentrated Solar collector field (Parabolic Trough Collector Field) without storage tank and water is used as a working fluid in both the systems. Economic analysis is also reported to assess the performance and commercial viability of the system.

References

  1. A Review on Nano fluids: Preparation, Stability Mechanisms, and Applications
  2. M. E. Burnett and S. Q. Wang, “Current sunscreen controversies:Acriticalreview,”Photodermatology,Photoimmunology&Photomedicine,vol.27, no.2,pp.58–67,2011.
  3. D.Lapotko,“Erratum: Plasmonic nanoparticle-generated photo thermal bubbles and their biomedical applications (Nano medicine (Nano medicine Lond.) (2009) 4:7 (813-845)),” Nanomedicine,vol.11,no.5,p.566,2016.
  4. K. Maier-Hauff, R. Rothe, and R. Scholz, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiform,” Journal of Neuro-Oncology,vol. 81,no.1,pp.53– 60,2007.
  5. Numerical Investigation of shell and tube heat exchanger using Al2O3 nanofluid
  6. Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger.
  7. E. Ozden, I. Tari, “Shell side CFD analysis of a small shell-and-tube heat exchanger,” Energy. Convers. Manage. 51, 1004-14, 2010.
  8. W. K. Kim, T. Aicher, “Experimental investigation of heat transfer in shell-and-tube heat exchangers without baffles,” Korean J. Chem. Eng. 14, 93-100, 1997.
  9. D. Eryener, “Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers,” Energy. Convers. Manage. 47, 1478-1489, 2006.
  10. Kwon Y H, Kim D, Li C G and Lee J K 2011 Heat transfer and pressure drop characteristics of Nano fluids in a plate heat exchanger, Journal of Nano science and Nanotechnology11(7)5769-5774.
  11. A review on nanofluid; fabrication, stability, and thermophysical properties.
  12. M.Wagener,B.S.Murty,andB.G¨unther,“Preparationofmetal nanosuspensions by high- pressure dc-sputtering on running liquids,” in Proceedings of the 1996 MRS Fall Symposium, E. P. George, R. Gotthardt, K. Otsuka, S. Trolier-McKinstry, and M. Wun-Fogle, Eds., pp. 149–154, Materials Research Society, Pittsburgh,PA,USA,1997.
  13. J. A. Eastman, S. U. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity     through   the                   development   of nanofluids,”inProceedingsofthe1996MRSFallSymposium,E.P. George,R.Gotthardt,K.Otsuka,S.Trolier-McKinstry,andM.          Wun-Fogle,Eds.,vol.457,pp.3– 11,MaterialsResearchSociety, Pittsburgh,PA,USA,1997.
  14. H.-T.Zhu,Y.-S.Lin,andY.-S.Yin,“Anovelone-stepchemical          methodfor       preparation ofcoppernanofluids,”JournalofColloid andInterfaceScience,vol.277,no.1,pp.100–103,2004.
  15. P. X. Tran and Y. Soong, Preparation of nanofluids using laser ablation in liquid technique, United States, Not published presentationonly,2007.
  16. C.-H. Lo, T.-T. Tsung, and L.-C. Chen, “Shape-controlled synthesisofCu- basednanofluidus       in   submergedarcnanoparticle synthesissystem(SANSS),”JournalofCrystalGrowth,vol.277, no.1–4,pp.636–642,2005.
  17. C.-H.Lo,T.-T.Tsung,andL.-C.Chen,“Ninano-magneticfluid prepared by submerged arc nano synthesis system (SANSS),” JSME International Journal Series B Fluids and Thermal Engineering,vol.48,no.4,pp.750–755,2006.
  18. X.WangandX.Xu,“Thermalconductivityofnanoparticle-fluidmixture,”JournalofThermophysicsandHeatTransfer,vol.13,no. 4,pp.474–480,1999.
  19. S.Lee,S.U.Choi,S.Li,andJ.A.Eastman,“Measuringthermal conductivity of fluids containing oxide nanoparticles,” Journal ofHeatTransfer,vol.121,no.2,pp.280–289,1999.
  20. W. Chamsa-ard, S. Brundavanam, C. C. Fung, D. Fawcett, and G. Poinern, “Nanofluid types, their synthesis, properties andincorporationindirectsolarthermalcollectors:Areview,” Nanomaterials,vol.7,no.6,articleno.131,2017.
  21. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethyleneglycol based nano fluids containing copper nanoparticles,” Applied Physics Letters, vol.78,no.6,pp.718–720,2001.
  22. L.Kong,J.Sun,andY.Bao,“Preparation,characterization and tribological mechanism of nanofluids,” RSCAdvances ,vol.7,no. 21,pp.12599–12609,2017.
  23. Stability and thermal analysis of MWCNT thermal oil based nanofluid.
  24. W. Yu, H. Xie, Y. Li, L. Chen, Q. Wang, Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles, Colloids Surf. A 380 (2011) 1–5.
  25. K.S. Suganthi, V. Leela Vinodhan, K.S. Rajan, ZnO-propylene glycol-water nanofluids with improved properties for potential applications in renewable energy and thermal management, Colloids Surf. A 506 (2016) 63–73.
  26. R. Shu, Y. Gan, H. Lv, D. Tan, Preparation and rheological behavior of ethylene glycol- based TiO2 nanofluids, Colloids Surf. A 509 (2016) 86–90.
  27. S.U. Ilyas, R. Pendyala, A. Shuib, N. Marneni, A review on the viscous and thermal transport properties of nanofluids, Adv. Mater. Res. 917 (2014) 18–27.
  28. W. Yu, H. Xie, L. Chen, Y. Li, Enhancement of thermal conductivity of kerosenebased Fe3O4 nanofluids prepared via phase-transfer method, Colloids Surf. A 355 (2010) 109–113.
  29. S.U. Ilyas, R. Pendyala, N. Marneni, Stability of nanofluids, in: V.S. Korada, N. Hisham, B. Hamid (Eds.), Engineering Applications of Nanotechnology: From Energy to Drug Delivery, Springer Int. Publishing, Cham, 2017, pp. 1–31.
  30. P. Gurav, S.S. Naik, K. Ansari, S. Srinath, K.A. Kishore, Y.P. Setty, S. Sonawane, Stable colloidal copper nanoparticles for a nanofluid: production and application, Colloids Surf. A 441 (2014) 589–597.
  31. M.K.Bushehri,A.Mohebbi,andH.H.Rafsanjani,“Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation,”Journal of Engineering Thermophysics, vol.25,no.3,pp.389–400,2016.
  32. J.HongandD.Kim,“Effects of aggregation on the thermal conductivity of alumina/water nanofluids,” Thermochimica Acta, vol.542,pp.28–32,2012.
  33. O. Arthur and M. A. Karim, “An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications,”Renewable & Sustainable Energy Reviews, vol.55,pp.739–755,2016. 34H.Setia,R.Gupta,andR.K.Wanchoo,“Stabilityofnanofluids,” MaterialsScienceForum,vol.757,pp.139–149,2013. 35 J.M.WuandJ.Zhao,“A review          of nanofluid heattransfer and critical heat flux enhancement—research gap to engineering application,”ProgressinNuclearEnergy,vol.66,pp.13–24,2013.
  34. A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” International Journal of Heat and Mass Transfer, vol.54,no.17-18,pp.4051–4068,2011.
  35. National Research Council (NRC), Washington D.C.
  36. Christos Tzivanidis, Evangelos Bellos, Kimon A, Antonopoulos, Energetic and Financial investigation of a stand-alone solar Thermal Organic Rankine Cycle.
  37. Luxmore Madiye, Kumbi Mugwindiri, Liberty Chiturumani, A feasibility study of a Hybrid Solar-Coal Fired Thermal Power Plant in a developing country – Zimbabwe.
  38. Nishith B. Desai & Santanu Bandyopadhyay, Integration of PTC and LFC for optimum design of concentrating solar thermal power plant.
  39. Stephen Mills, Combining solar power with coal fired power plants, or cofiring natural gas.
  40. Kody M. Powell, Khalid Rashid, Kevin Ellingwood, Jack Tuttle, Brain D. Iverson, Hybrid Concentrated Solar Thermal Power System.
  41. Sandip S. Deshmukh, Onkareshwar Mishra, Vatsal Agrawal, Khalid Anwar, Hybrid CSP in India: Technological and Economical Aspect.
  42. Richa Mehta, P.K. Joshi, Alok Kumar Jindal, Solar Power Potential mapping in India using remote sensing inputs and environmental parameters.
  43. Nishith B. Desai, Surendra Singh Kachhwaha, Bhavesh Patel, Thermo-Economic analysis of Solar –Biomass Organic Rankine Cycle Powered Cascade vapour compression- absorption system.
  44. Haresh Makwana, Solar Power Production and Policy of Gujarat: A SWOT Analysis

Downloads

Published

2019-01-30

Issue

Section

Research Articles

How to Cite

[1]
Akash Anilkumar Bhavsar, Dr. Sadanand Namjoshi, " Thermal and Economic analysis of Solar Organic Rankine Cycle, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 1, pp.589-604, January-February-2019. Available at doi : https://doi.org/10.32628/IJSRSET2196137