ETL Best Practices : Transforming Raw Data into Business Insights

Authors

  • N V Rama Sai Chalapathi Gupta Lakkimsetty   Independent Researcher, USA

Keywords:

ETL, Data Transformation, Data Warehousing, Big Data, AI-Driven ETL, Cloud Computing, Data Governance

Abstract

Extract, Transform, Load (ETL) processes play a critical role in modern data management, enabling organizations to extract raw data, transform it into meaningful formats, and load it into analytical systems for business insights. With the advent of big data, cloud computing, and AI-driven analytics, ETL has evolved significantly. This paper explores best practices in ETL processes, discussing key strategies for optimizing data extraction, transformation, and loading. The research provides insights into modern ETL architectures, including ELT, data mesh, and serverless ETL solutions, while highlighting challenges related to security, compliance, and performance scalability.

References

  1. Abedjan, Z., Golab, L., & Naumann, F. (2015). Profiling relational data: a survey. The VLDB Journal, 24(4), 557–581. https://doi.org/10.1007/s00778-015-0389-y
  2. Arunachalam, D., Kumar, N., & Kawalek, J. P. (2017). Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transportation Research Part E Logistics and Transportation Review, 114, 416–436. https://doi.org/10.1016/j.tre.2017.04.001
  3. Azeroual, O., Saake, G., & Abuosba, M. (2019). ETL Best Practices for Data Quality Checks in RIS Databases. Informatics, 6(1), 10. https://doi.org/10.3390/informatics6010010
  4. da Silva, A. V. (2022). Implementing an SQL Based ETL Platform for Business Intelligence Solution. Retrieved from https://search.proquest.com/docview/1234567890
  5. El-Seoud, S. A., El-Sofany, H. F., Abdelfattah, M. a. F., & Mohamed, R. (2017). Big data and cloud computing: trends and challenges. International Journal of Interactive Mobile Technologies (iJIM), 11(2), 34. https://doi.org/10.3991/ijim.v11i2.6561
  6. Gadde, H. (2020). AI-Enhanced Data Warehousing: Optimizing ETL Processes for Real-Time Analytics. Revista de Inteligencia Artificial en Medicina, 11(1), 300-327. Retrieved from https://www.academia.edu/124871703/AI_Enhanced_Data_Warehousing_Optimizing_ETL_Processes_for_Real_Time_Analytics
  7. Hu, H., Wen, Y., Chua, T., & Li, X. (2014). Toward Scalable Systems for Big Data Analytics: A Technology tutorial. IEEE Access, 2, 652–687. https://doi.org/10.1109/access.2014.2332453
  8. Julakanti, S. R., Sattiraju, N. S. K., & Julakanti, R. (2022). Transforming Data in SAP HANA: From Raw Data to Actionable Insights. NeuroQuantology, 19(11), 854-861. https://doi.org/10.14704/nq.2022.19.11.NQ22432
  9. Kara, M. E., Fırat, S. Ü. O., & Ghadge, A. (2018). A data mining-based framework for supply chain risk management. Computers & Industrial Engineering, 139, 105570. https://doi.org/10.1016/j.cie.2018.12.017
  10. Kimball, R., & Caserta, J. (2004). The Data Warehouse ETL Toolkit: Practical Techniques for Extracting, Cleaning, Conforming, and Delivering Data. Wiley. https://doi.org/10.1002/9781119175156
  11. Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., Ramirez-Quintana, M. J., & Flach, P. (2019). CRISP-DM Twenty years Later: From data mining processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048–3061. https://doi.org/10.1109/tkde.2019.2962680
  12. Munappy, A. R., Mattos, D. I., Bosch, J., Olsson, H. H., & Dakkak, A. (2020). From Ad-Hoc data analytics to DataOps. ETL Best Practices: Transforming Raw Data Into Business Insights, 165–174. https://doi.org/10.1145/3379177.3388909
  13. Oliveira, N. F. (2021). ETL for Data Science?: A Case Study. Retrieved from https://repositorio.iscte-iul.pt/bitstream/10071/23699/1/master_nicole_furtado_oliveira.pdf
  14. Pham, P. (2020). A Case Study in Developing an Automated ETL Solution: Concept and Implementation. Retrieved from https://www.theseus.fi/handle/10024/340208
  15. Rodzi, N. A. H. M., Othman, M. S., & Yusuf, L. M. (2015). Significance of Data Integration and ETL in Business Intelligence Framework for Higher Education. 2015 International Conference on Science in Information Technology (ICSITech), 144-148. https://doi.org/10.1109/ICSITech.2015.7407809
  16. Sreemathy, J., & Brindha, R. (2021). Overview of ETL Tools and Talend-Data Integration. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 1, 1164-1167. https://doi.org/10.1109/ICACCS51430.2021.9441984
  17. Stodder, D., & Matters, W. D. P. (2016). Improving Data Preparation for Business Analytics. Transforming Data With Intelligence. Retrieved from https://www.redpointglobal.com/wp-content/uploads/2016/10/TDWI_BPReport_Q316_RedPoint_F_rev2_code_Final.pdf
  18. Wang, D., Weisz, J. D., Muller, M., Ram, P., Geyer, W., Dugan, C., Tausczik, Y., Samulowitz, H., & Gray, A. (2019). Human-AI collaboration in data science. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–24. https://doi.org/10.1145/3359313
  19. Ashish Babubhai Sakariya, " Leveraging CRM Tools to Boost Marketing Efficiency in the Rubber Industry , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 6, pp.375-384, January-February-2018.
  20. Ashish Babubhai Sakariya, " Impact of Technological Innovation on Rubber Sales Strategies in India , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 5, pp.344-351, September-October-2019.
  21. Chinmay Mukeshbhai Gangani, " Applications of Java in Real-Time Data Processing for Healthcare , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 5, pp.359-370, September-October-2019.
  22. Chinmay Mukeshbhai Gangani , "Data Privacy Challenges in Cloud Solutions for IT and Healthcare", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 7 Issue 4, pp. 460-469, July-August 2020.
  23. Journal URL : https://ijsrst.com/IJSRST2293194 | BibTeX | RIS | CSV

Downloads

Published

2022-07-14

Issue

Section

Research Articles

How to Cite

[1]
N V Rama Sai Chalapathi Gupta Lakkimsetty "ETL Best Practices : Transforming Raw Data into Business Insights" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 9, Issue 4, pp.533-546, July-August-2022.