Determinants of Regional Unemployment Rates in West Java : Geographically Weighted Panel Regression (GWPR) Model
DOI:
https://doi.org/10.32628/IJSRSET229153Keywords:
Regional Unemployment, Labor Supply Demand, GWR PanelAbstract
This study aims to analyze the determinants of the regional unemployment rates in West Java Province in the period 2010-2019. Due to the diversity of characteristics between regions, this study uses Geographically Weighted Panel Regression (GWPR) analysis. The results showed that all the independent variables used had a significant effect on the regional unemployment rate in West Java. It is recommended that the government encourage efforts to reduce unemployment in their regions by investing more in real sector development, attracting investors in the manufacturing and service sectors, and improving education and skills.
References
- [Bappeda] Badan Perencanaan Pembangunan Daerah Provinsi Jawa Barat. 2018. Rencana Pembangunan Jangka Menengah Daerah Provinsi Jawa Barat Tahun 2013-2018. Bandung (ID): Bappeda Provinsi Jawa Barat.
- [Bappeda] Badan Perencanaan Pembangunan Daerah Provinsi Jawa Barat. 2018b. Rencana Kerja Pemerintah Daerah Provinsi Jawa Barat Tahun 2018. Bandung (ID): Bappeda Provinsi Jawa Barat
- [BPS] Badan Pusat Statistik. 2019. Keadaan Angkatan Kerja Provinsi Jawa Barat Agustus. Bandung (ID): BPS
- [BPS] Badan Pusat Statistik. Berbagai Tahun. Provinsi Jawa Barat Dalam Angka. Bandung (ID): BPS
- Blanchard O, Katz L. 1992. Regional Evolution. Brookings Papers on Economic Policy. January 2006. Pp: 5-59.
- Bruna F, Yu D. 2016. Geographically Weigthed Panel Regression and Development Accounting for European Regions. International Conference on Regional Science. 2016 Nov 17-18: hlm 1-20.
- Caraka RE, Yasin H. 2017. Geographically Weighted Regression (GWR); Sebuah Pendekatan Regresi Geografis. Yogyakarta (ID): Mobius.
- Chuang YC, Lai WW. 2007. The Sources of Taiwan’s Regional Unemployment: A Cross-Region Panel Analysis. Hitotsubashi Journal of Economics, No. 49, pp: 47-65.
- Cracolici MF, Cuffaro M, Nijkamp P. 2007 Geographical distribution of unemployment: An analysis of provincial differences in Italy. Growth Change 38(4): 642–665.
- [Disnakertrans]. 2019. Upah minimum kabupaten/kota di Provinsi Jawa Barat Tahun 2010-2019. Bandung (ID): Disnakertrans Provinsi Jawa Barat.
- Djuraidah A, Syafitri UD, Handayani LMW. 2019. Estimation of factors affecting gross regional domestic product using geographically weighted regression (case study: gross regional domestic product in Central Java 2011-2015). International Journal of Ecological Economics and Statistic. 40(1): 1-15
- Eka A, Liza KS. 2019. Analisis Spasial Untuk Mengidentifikasi Pengangguran Terbuka Berdasarkan Kabupaten/kota di Pulau Jawa tahun 2017. Indonesian Journal of Statistics and Its Applications, vol 3 No 3 (2019): 202 – 215.
- Elhorst JP. 2003. The Mystery of Regional Unemployment Differentials: Theoretical and Empirical Explanation. Journal of Economics Survey. 17(5): 709-748.
- Fliesher BM, Rhodes G. 1976. Unemployment and the Labor Force Participation of Married Men and Woman: A Simultaneous Model. The Reviuw of Economics and Statistics. 58(4): 398-406
- Filiztekin A. 2008. Regional Unemployment in Turkey. Papers in Regional Science. 88(4): 863-873.
- Getis A. 2007. Reflections on spatial autocorrelation. Journal of Regional Science and Urban Economics. 37(4):491-496.
- Guclu M. 2017. Regional Unemployment Disparities in Turkey. Romanian Journal for Economic Forecasting. 20(2): 94-108.
- Khaerandi, NA Achsani, T Irawan. 2019. Determinan of Regional Unemployment in Indonesia : A Spatial Durbin Model. Signifikan: Jurnal Ilmu Ekonomi, vol 8(2): 179–194.
- Latif A. 2018. Faktor-Faktor yang Memengaruhi IndeksPembangunan Manusia di Provinsi Kalimantan Tengah. Jurnal Ekonomi dan Kebijakan Pembangunan, Vol 7(2): 140-158.
- Lewandowska K, Gwarda. 2018. Geographically weighted regression in the analysis of unemployment in Poland. International Journal of Geo-Information. 7(17):1-16.
- Mankiw NG. 2003. Teori Makroekonomi. Nurmawan, Imam [penerjemah]. Jakarta: Erlangga.
- Maulani A, Herrhyanto N, Suherman M. 2016. Aplikasi model geographic weighted regression (GWR) untuk menentukan faktor-faktor yang memengaruhi kasus gizi buruk anak balita di Jawa Barat. Jurnal EurekaMatika. 4(1):46-63.
- Meutuah SM, Yasin H, Maruddani DAI. 2017. Permodelan fixed effect geographically weighted panel regression untuk indeks pembangunan manusia di Jawa Tengah. Jurnal Gaussian. 6(2): 241-250.
- O’Sullivan D, Unwin DJ. 2010. Geographic Information Analysis. New Jersey (US): John Wiley and Sons Inc.
- Pravitasari AE, Saizen I, Tsutsumida N, Rustiadi E, Pribadi DO. 2015. Local spatially dependent driving forces of urban expansion in an emerging Asian megacity: the case of greater Jakarta (Jabodetabek). Journal of Sustainable Development. 8(1):108-119.
- Rahayu NS. 2017. Geographically weihgted panel regression untuk permodelan persentase penduduk miskin di Provinsi Jawa Tengah [tesis]. Surabaya (ID): Instutut Teknologi Sepuluh Nopember.
- Sari NA, Priyarno DS, Hartono D. 2011. Pengangguran di Indonesia Tahun 1984-2008. [Tesis]. Bogor (ID): Institut Pertanian Bogor.
- Sukirno, Sadono. 2008. Teori Pengantar Makroekonomi edisi 3. PT.Raja grafindo persada. Jakarta.
- Tiani WU, A Rohman, A Prahutama. 2016. Pemodelan Regresi Berganda dan Geographically Weighted Regression pada Tingkat Pengangguran Terbuka di Jawa Tengah. Media Statistika 9(2) 2016: 133-147.
- Todaro MP, Smith SC. 2011. Pembangunan Ekonomi. Jilid I. Edisi kesebelas. Jakarta (ID): Erlangga. terjemahan dari: Economic Development.
- Uk Kim, Lim. 2018. Minimum Wage and Unemployment: An Empirical Study on OECD Countries. Journal of Reviews on Global Economics, 2018, vol 7: 1-9
- Qur’ani AY. 2014. Permodelan geographically weighted regression panel (GWRpanel) sebagai pendekatan model geographically weighted regression (GWR) dengan menggunakan fixed effect model time trend. Jurnal Mahasiswa Statistik. 2(3): 181-184.
- Yu D. 2010. Exploring spatiotemporally varying regressed relationships: the geographically weighted panel regression analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 38(2):134-139.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.