A Survey on Automated Detection of Cardiac Arrhythmia

Authors

  • Aniket Patil  Department of Computer Engineering, Zeal College of Engineering and Research, Pune, Maharashtra, India
  • Sachin Patil  Department of Computer Engineering, Zeal College of Engineering and Research, Pune, Maharashtra, India

Keywords:

Arrhythmia detection, Artificial Intelligence (AI), Electrocardiogram (ECG), Classification.

Abstract

Cardiac arrhythmia is a potentially life-threatening condition which is generally detected by a doctor with the help of an electrocardiogram (ECG). An arrhythmia is an irregular heartbeat which is caused when the electrical signals controlling the heart are at fault. In the modern world of Artificial Intelligence (AI) and Machine Learning (ML) we can automate the process of detection of such diseases to avoid manual delays in diagnosis in a world affected by COVID-19, where the medical personnel are already overburdened. Automating arrhythmia detection is a problem of classification of heartbeats into normal or the different classes of arrhythmias. It not only reduces the time for diagnosis but also reduces the possibilities of manual errors preventing accurate diagnosis. In this survey we systematically explore the various methodologies and algorithms which have been proposed prior with respect to their advantages, prediction metrics, datasets and gaps. The gap analysis sheds light on the disadvantages of the explored methods and hence provides the future scope of research for them.

References

  1. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M. et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25, 65–69 (2019). https://doi.org/10.1038/s41591-018-0268-3
  2. M. Degirmenci, M.A. Ozdemir, E. Izci, A. Akan, Arrhythmic Heartbeat Classification Using 2D Convolutional Neural Networks, IRBM, 2021, ISSN 1959-0318. https://doi.org/10.1016/j.irbm.2021.04.002
  3. M. A. Ozdemir, O. Guren, O. K. Cura, A. Akan and A. Onan, "Abnormal ECG Beat Detection Based on Convolutional Neural Networks," 2020 Medical Technologies Congress (TIPTEKNO), 2020, pp. 1-4, doi: 10.1109/TIPTEKNO50054.2020.9299260.
  4. J. Huang, B. Chen, B. Yao and W. He, "ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network," in IEEE Access, vol. 7, pp. 92871-92880, 2019, doi: 10.1109/ACCESS.2019.2928017.
  5. Sraitih M, Jabrane Y, Hajjam El Hassani A. An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques. J Clin Med. 2021 Nov 22;10(22):5450. doi: 10.3390/jcm10225450. PMID: 34830732; PMCID: PMC8618527.
  6. Khalaf, Aya & Owis, Mohamed & Yassine, Inas. (2015). A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Systems with Applications. 42. 10.1016/j.eswa.2015.06.046.
  7. Mehmet Baygin, Turker Tuncer, Sengul Dogan, Ru-San Tan, U. Rajendra Acharya, Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records, Information Sciences, Volume 575, 2021, Pages 323-337, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2021.06.022.
  8. Turker Tuncer, Sengul Dogan, Paweł Pławiak, U. Rajendra Acharya, Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals, Knowledge-Based Systems, Volume 186, 2019, 104923, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2019.104923.
  9. M.K. Moridani, M. Abdi Zadeh, Z. Shahiazar Mazraeh, An Efficient Automated Algorithm for Distinguishing Normal and Abnormal ECG Signal, IRBM, Volume 40, Issue 6, 2019, Pages 332-340, ISSN 1959-0318, https://doi.org/10.1016/j.irbm.2019.09.002.
  10. Manish Sharma, Ru-San Tan, U. Rajendra Acharya, Automated heartbeat classification and detection of arrhythmia using optimal orthogonal wavelet filters, Informatics in Medicine Unlocked, Volume 16, 2019, 100221, ISSN 2352-9148, https://doi.org/10.1016/j.imu.2019.100221.
  11. Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng in Med and Biol 20(3):45-50 (May-June 2001). (PMID: 11446209)
  12. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
  13. Pandey, S.K.; Janghel, R.R.; Vani, V. Patient Specific Machine Learning Models for ECG Signal Classification. Procedia Comput. Sci. 2020, 167, 2181–2190.
  14. Kumari, C.U.; Murthy, A.S.D.; Prasanna, B.L.; Reddy, M.P.P.; Panigrahy, A.K. An automated detection of heart arrhythmias using machine learning technique: SVM. Mater. Today Proc. 2020, 45, 1393–1398.
  15. Karunakaran, V.; Saranr, M.; Abishek, S.; TG, G.V.; Vojaswwin, A.; Ramachandran, K.I. Detection of Obstructive Sleep Apnea from ECG Signal Using SVM Based Grid Search. Int. J. Electron. Telecommun. 2021, 67, 5–12.
  16. Karpagachelvi, S.; Arthanari, M.; Sivakumar, M. Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Comput. Appl. 2012, 21, 1331–1339.
  17. Wu, Q.; Zhou, D.X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 2006, 8, 99–119.
  18. Awad, M.; Khanna, R. Support vector machines for classification. In Efficient Learning Machines;Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–66.
  19. Li, T.; Gao, M.; Song, R.; Yin, Q.; Chen, Y. Support Vector Machine Classifier for Accurate Identification of piRNA. Appl. Sci. 2018, 8, 2204.
  20. Lekhal, R.; Zidelmal, Z.; Ould-Abdesslam, D. Optimized time–frequency features and semi-supervised SVM to heartbeat classification. Signal Image Video Process. 2020, 14, 1471–1478.
  21. Elhaj, F.A.; Salim, N.; Harris, A.R.; Swee, T.T.; Ahmed, T. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 2016, 127, 52–63.
  22. Alonso-Atienza, F.; Morgado, E.; Fernandez-Martinez, L.; García-Alberola, A.; Rojo-Alvarez, J.L. Detection of life threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 2013, 61, 832–840.
  23. Raj, S.; Ray, K.C. ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans. Instrum. Meas. 2017, 66, 470–478.
  24. Moavenian, M.; Khorrami, H. A qualitative comparison of artificial neural networks and support vector machines in ECG arrhythmias classification. Expert Syst. Appl. 2010, 37, 3088–3093.
  25. J. Zheng, J. Zhang, S. Danioko, H. Yao, H. Guo, C. Rakovski, A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients, Sci. Data 7 (2020) 1–8.
  26. J. Zheng, H. Chu, D. Struppa, J. Zhang, S.M. Yacoub, H. El-Askary, A. Chang, L. Ehwerhemuepha, I. Abudayyeh, A. Barrett, G. Fu, H. Yao, D. Li, H. Guo, C. Rakovski, Optimal multi-stage arrhythmia classification approach, Sci. Rep. 10 (1) (2020), https://doi.org/10.1038/s41598-020-59821-7.
  27. Sharma M, Bhurane AA, Acharya UR. MMSFL-OWFB: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl Based Syst 2018;160:265–77. https://doi.org/10.1016/j.knosys.2018.07.019.
  28. M. Sharma, R. S. Tan, U. R. Acharya, A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank, Computers in Biology and Medicine doi:https://doi.org/10.1016/j. compbiomed.2018.07.005. URL http://www.sciencedirect.com/science/article/pii/S0010482518301884.
  29. M. Sharma, R. B. Pachori, A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension, Journal of Mechanics in Medicine and Biology 0 (0) (0) 1740003. arXiv:http://www.worldscientific.com/doi/pdf/10.1142/S0219519417400036, doi:10.1142/S0219519417400036.
  30. Sharma M, Sharma P, Pachori RB, Gadre VM. Double density dual-tree complex wavelet transform based features for automated screening of knee-joint vibroarthrographic signals. In: Machine intelligence and signal analysis. Advances in intelligent systems and computing, vol. 748. Singapore: Springer; 2019. p. 279–90.
  31. Inan OT, Giovangrandi L, Kovacs GT. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Trans Biomed Eng 2006;53(12):2507–15.
  32. Li T, Zhou M. Ecg classification using wavelet packet entropy and random forests. Entropy 2016;18(8). 285.
  33. Daubechies I. Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 1988;41(7):909–96.
  34. Shah S, Sharma M, Deb D, Pachori RB. An automated alcoholism detection using orthogonal wavelet filter bank. In: International conference on machine intelligence and signal analysis advances in intelligent systems and computing, vol. 748. Singapore: Springer; 2019. p. 473–83. 2019, https://doi.org/10.1007/978-981-13-0923-6_41.
  35. Sharma M, Agarwal S, Acharya UR. Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ecg signals. Comput Biol Med 2018;100:100–13. https://doi.org/10.1016/j.compbiomed.2018.06.011. http://www.sciencedirect.com/science/article/pii/S0010482518301598.
  36. Sharma M, Pachori RB, Acharya UR. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit Lett 2017;94:172–9. https://doi.org/10.1016/j.patrec.2017.03.023. http://www.sciencedirect.com/science/article/pii/S0167865517300995.
  37. Sharma M, Achuth PV, Pachori RB, Gadre VM. A parametrization technique to design joint time–frequency optimized discrete-time biorthogonal wavelet bases. Signal Process 2017;135:107–20.
  38. Sharma M, Dhere A, Pachori RB, Gadre VM. Optimal duration-bandwidth localized antisymmetric biorthogonal wavelet filters. Signal Process 2017;134:87–99.
  39. Sharma M, Dhere A, Pachori RB, Acharya UR. An automatic detection of focal EEG signals using new class of time–frequency localized orthogonal wavelet filter banks. Knowl Based Syst 2017;118:217–27.
  40. Sharma M, Bhati D, Pillai S, Pachori RB, Gadre VM. Design of time–frequency localized filter banks: transforming non-convex problem into convex via semidefinite relaxation technique. Circuits Syst Signal Process 2016;35(10): 3716–33.
  41. Sharma M, Gadre VM, Porwal S. An eigenfilter-based approach to the design of time-frequency localization optimized two-channel linear phase biorthogonal filter banks. Circuits Syst Signal Process 2015;34(3):931–59.
  42. Hampton, John R, The E. C. G. made easy, 9th Edition, Elsevier, 2019.

Downloads

Published

2022-04-30

Issue

Section

Research Articles

How to Cite

[1]
Aniket Patil, Sachin Patil, " A Survey on Automated Detection of Cardiac Arrhythmia, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 9, Issue 2, pp.449-458, March-April-2022.