Addition of Aspergillus Niger Palm Waste (Animal Feed Alternative)

Authors

  • Syamsuddin  Faculty of Animal Science, Halu Oleo University, Jl. H.E.A Mokodompit, Campus Hijau Bumi Tridharma, Anduonohu, Kendari City, Southeast Sulawesi, Indonesia
  • Harapin Hafid  Faculty of Animal Science, Halu Oleo University, Jl. H.E.A Mokodompit, Campus Hijau Bumi Tridharma, Anduonohu, Kendari City, Southeast Sulawesi, Indonesia
  • Rusli Badaruddin  Faculty of Animal Science, Halu Oleo University, Jl. H.E.A Mokodompit, Campus Hijau Bumi Tridharma, Anduonohu, Kendari City, Southeast Sulawesi, Indonesia
  • Amiluddin Indi  Faculty of Animal Science, Halu Oleo University, Jl. H.E.A Mokodompit, Campus Hijau Bumi Tridharma, Anduonohu, Kendari City, Southeast Sulawesi, Indonesia
  • Natsir Sandiah  Faculty of Animal Science, Halu Oleo University, Jl. H.E.A Mokodompit, Campus Hijau Bumi Tridharma, Anduonohu, Kendari City, Southeast Sulawesi, Indonesia

DOI:

https://doi.org//10.32628/IJSRSET229231

Keywords:

Aspergillus Niger, Waste, Animal Feed.

Abstract

The study aimed to determine the effect of adding the fungus Aspergillus niger to the chemical quality of fermented palm oil leaf and midrib waste as an alternative feed ingredient. The research design used a Completely Randomized Design (CRD) in one direction with four treatments and four replications. The treatment given to oil palm leaves and midribs was P0 = oil palm leaves and midribs + 20% EM4, P1 = oil palm leaves and midribs + 20% EM4 + 1% Aspergillus niger, P2 = oil palm leaves and midribs + 20% EM4 + 2% Aspergillus niger, P3 = oil palm leaf and midrib + 20% EM4 + 3% Aspergillus niger. This fermentation was carried out using the Least Significant Difference Test (SDT) method. The results showed that the fermentation of oil palm leaves and midribs could significantly increase the crude protein content in the P2 treatment (10.32%) and organic matter in the P1 treatment (29.09%), but had no significant effect on dry matter and crude fiber.

References

  1. U. Holker, M. Höfer, and J. Lenz. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol. vol. 64, no. 2, pp. 175–186, Apr. 2004, DOI: 10.1007/s00253-003-1504-3.
  2. G. S. Dhillon, S. K. Brar, M. Verma, and R. D. Tyagi. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochemical Engineering Journal, vol. 54, no. 2, pp. 83–92, Apr. 2011, DOI: 10.1016/j.bej.2011.02.002.
  3. J. Firison, A. Ishak, Z. Efendi, E. Ramon, and A. Afrizon. Faktor Penghambat Keberlanjutan Penggunaan Solid Limbah Sawit Sebagai Pakan Ternak Sapi Potong Di Kabupaten Seluma Provinsi Bengkulu (Studi Kasus). Buletin Peternakan Tropis, vol. 2, no. 1, Art. no. 1, Jun. 2021, doi: 10.31186/bpt.2.1.30-38.
  4. M. Dalimunthe, D. Purnama, Jasmidi, S. Amdayani, H. Annazilli, and J. L. Sihombing. Teknologi Pakan Ternak Silase Dari Limbah Pelepah Daun Kelapa Sawit Di Desa Perkebunan Amal Tani. Jurnal Pengabdian Kepada Masyarakat (JPKM) TABIKPUN, vol. 2, no. 1, Art. no. 1, Mar. 2021.
  5. N. Nurhaita, J. Jamarun, L. Warly, and M. Zain. Kecernaan Ransum Domba Berbasis Daun Sawit Teramoniasi yang Disuplementasi Sulfur, Fosfor, dan Daun Ubi Kayu. Media Peternakan, vol. 33, no. 3, Art. no. 3, 2010, doi: 10.5398/medpet.2010.33.3.144.
  6. N. Nurhaita, N. Definiati, and S. Suliasih. Pemanfaatan Limbah Pelepah Sawit Sebagai Pakan Ternak Sapi Pada Kelompok Pemuda Tani Tunas Muda. Dharma Raflesia: Jurnal Ilmiah Pengembangan dan Penerapan IPTEKS, vol. 14, no. 1, Art. no. 1, 2016, doi: 10.33369/dr.v14i1.4282.
  7. I. Indrayani, J. Hellyward, and Y. Alveni. Daya Dukung Tanaman Sawit Dan Hasil Ikutan Limbah Pengolahan Sawit Sebagai Pakan Ternak Sapi Potong Di Sumatera Barat. Pastura, vol. 5, no. 2, pp. 104–108, Aug. 2017, doi: 10.24843/Pastura.2016.v05.i02.p09.
  8. R. Fidriyanto, R. Ridwan, R. Rohmatussolihat, W. D. Astuti, N. F. Sari, and Y. Widyastuti. Formulasi Inokulum Bakteri untuk Pengolahan Limbah Sawit Sebagai Pakan Ternak. Proceeding of Biology Education, vol. 2, no. 1, Art. no. 1, Oct. 2018.
  9. A. Rizali, F. Fachrianto, M. H. Ansari, and A. Wahdi. Pemanfaatan Limbah Pelepah Dan Daun Kelapa Sawit Melalui Fermentasi Trichoderma sp. Sebagai Pakan Sapi Potong. EnviroScienteae, vol. 14, no. 1, Art. no. 1, Apr. 2018, doi: 10.20527/es.v14i1.4886.
  10. S. Syafrizal, N. Nurliana, and S. Sugito. Pengaruh Pemberian Ampas Kedelai dan Bungkil Inti Sawit (AKBIS) yang Difermentasi dengan Aspergillus niger terhadap Kadar Lemak dan Kolesterol Daging Dada Broiler. Jurnal Agripet, vol. 18, no. 2, Art. no. 2, Oct. 2018, doi: 10.17969/agripet.v18i2.8109.
  11. R. H. Pranata and Z. Arico. Pemanfaatan Limbah Kebun Pelepah Kelapa Sawit (Elaeis guinensis Jacq) Sebagai Alternatif Pakan Ternak Bernilai Gizi Tinggi. JURNAL BIOLOGICA SAMUDRA, vol. 1, no. 1, pp. 17–24, 2019.
  12. M. A. Pagala, D. Zulkarnain, and L. O. M. Munadi. Kapasitas Daya Tampung Hijauan Pakan Ternak dan Hasil Ikutan Perkebunan Kelapa Sawit di Kecamatan Tanggetada Kabupaten Kolaka. Jurnal Sosio Agribisnis, vol. 5, no. 2, Art. no. 2, Oct. 2020, doi: 10.33772/jsa.v5i2.9918.
  13. S. Aritonang. The Potentials Of Palm Oil Plantation Wastes As Animal Feed At Traditional Farming In Teras Terunjam Subdistrict Muko-Muko District. JIT, vol. 18, no. 2, pp. 95–103, May 2019, DOI: 10.24198/jit.v18i2.20757.
  14. D. A. H. Alhasan, H. A. Husein, and A. Q. Dawood. In Vitro Antimicrobial Activity of The Filtrate Crude Extract Produced by Aspergillus niger. University of Thi-Qar Journal of Science, vol. 7, no. 1, Art. no. 1, May 2019.
  15. T. Robinson, D. Singh, and P. Nigam. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol, vol. 55, no. 3, pp. 284–289, Apr. 2001, DOI: 10.1007/s002530000565.
  16. C. Krishna. Solid-state fermentation systems-an overview. Crit Rev Biotechnol, vol. 25, no. 1–2, pp. 1–30, Jun. 2005, DOI: 10.1080/07388550590925383.
  17. S. Al-Zuhair, K. Ahmed, A. Abdulrazak, and M. H. El-Naas. Synergistic effect of pretreatment and hydrolysis enzymes on the production of fermentable sugars from date palm lignocellulosic waste. Journal of Industrial and Engineering Chemistry, vol. 19, no. 2, pp. 413–415, Mar. 2013, DOI: 10.1016/j.jiec.2012.09.022.
  18. Riswandi, A. I. M. Ali, S. Sandi, and Muhakka. Application of Ammoniation-fermentation Technology based on Palm Plantation Waste for Increasing Productivity of Pampangan Buffalo,” APCBEE Procedia, vol. 8, pp. 93–98, 2014, DOI: 10.1016/j.apcbee.2014.03.007.
  19. F. N. Kayati, S. Syamsiah, W. B. Sediawan, and S. Sutijan. Studi Kinetika Hidrolisis Tandan Kosong Kelapa Sawit (TKKS) Dengan Proses Fermentasi Padat Menggunakan Jamur Aspergillus niger. Reaktor, vol. 16, no. 1, pp. 1–8, May 2016, doi: 10.14710/reaktor.16.1.1-8.
  20. C. S. Kim, D.-H. Lim, and Y.-S. Keum. Biodegradation Pathways of Polychlorinated Biphenyls by Soil Fungus Aspergillus niger. The Korean Journal of Pesticide Science, vol. 20, no. 1, pp. 7–13, 2016, DOI: 10.7585/kjps.2016.20.1.7.
  21. Z. Lili, S. Zhanwu, A. Binling, Z. Xiaoyan, and J. Zhiqiang. Effect of Different Mutation Methods on Xylanase Production Ability by Aspergillus Niger. Science Discovery, vol. 4, no. 2, Art. no. 2, May 2016, DOI: 10.11648/j.sd.20160402.13.
  22. M. L. Soni, M. Gupta, and K. P. Namdeo. Isolation of sporopollenin-like biopolymer from Aspergillus niger and its characterization. Chemical Papers, vol. 70, no. 12, pp. 1556–1567, Dec. 2016, DOI: 10.1515/chempap-2016-0099.
  23. M. E. Ahmed. Extraction and purification of protease from Aspergillus niger isolation. Pharmacy & Pharmacology International Journal, vol. 6, no. 2, pp. 96–99, Mar. 2018, DOI: 10.15406/ppij.2018.06.00162.
  24. S. P. Edor, O. P. Edogbanya, and J. R. Kutshik. Cellulase activity of Aspergillus niger in the biodegradation of rice husk. MOJ Biology and Medicine., Vol 3, no. 2, pp. 49-51, Jun. 2018, DOI: 10.15406/mojbm.2018.03.00075.
  25. Z. W. Abdulameer, B. N. Essa, and G. M. Aziz. Optimum conditions for Inulinase production by Aspergillus niger using solid-state fermentation. Baghdad Science Journal, vol. 12, no. 2, pp. 307–316, Sep. 2019.
  26. M. T. Ekhlass, K. M. S. Noura, O. Othman, Hayyan. I. Al-Taweil, W. M. W. Yusoff, and A. A. Hamid. Biochemical Characterization for Lipid Synthesis in Aspergillus niger. Baghdad Science Journal, vol. 13, no. 2, pp. 375–382, Sep. 2019.
  27. S. Steudler, A. Werner, and T. Walther. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. Adv Biochem Eng Biotechnol, vol. 169, pp. 51–81, 2019, DOI: 10.1007/10_2019_85.
  28. W. N. S. Mohd Luthfi, H. Alias, G. S. Tay, and C. K. Lee. Production and characterization of bioflocculant via a solid-state fermentation process using oil palm empty fruit bunch fibers as substrate. Biocatalysis and Agricultural Biotechnology, vol. 23, p. 101454, Jan. 2020, DOI: 10.1016/j.bcab.2019.101454.
  29. D. N. Putri, A. Khootama, M. S. Perdani, T. S. Utami, and H. Hermansyah. Optimization of Aspergillus niger lipase production by solid-state fermentation of agro-industrial waste. Energy Reports, vol. 6, pp. 331–335, Feb. 2020, DOI: 10.1016/j.egyr.2019.08.064.
  30. S. Afiqah Razali, N. Rasit, and C. Kuan Ooi. Statistical analysis of xylanase production from solid-state fermentation of rice husk associated fungus Aspergillus niger. Materials Today: Proceedings, vol. 39, pp. 1082–1087, Jan. 2021, DOI: 10.1016/j.matpr.2020.06.366.
  31. H. S. Hafid, A. S. Baharuddin, M. N. Mokhtar, F. N. Omar, M. A. P. Mohammed, and M. Wakisaka. Enhanced laccase production for oil palm biomass delignification using biological pretreatment and its estimation at biorefinery scale. Biomass and Bioenergy, vol. 144, p. 105904, Jan. 2021, DOI: 10.1016/j.biombioe.2020.105904.
  32. Yu. V. Litti et al. Auto-selection of microorganisms of sewage sludge used as an inoculum for fermentative hydrogen production from different substrates. International Journal of Hydrogen Energy, vol. 46, no. 58, pp. 29834–29845, Aug. 2021, doi: 10.1016/j.ijhydene.2021.06.174.
  33. M. R. Meini, I. Cabezudo, C. S. Galetto, and D. Romanini. Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Bioscience, vol. 42, p. 101168, Aug. 2021, DOI: 10.1016/j.fbio.2021.101168.
  34. A. Hofit, B. Muwakhid, and I. Kentjonowaty. Pengaruh Alkalinasi Air Kapur Dan Fermentasi Jerami Jagung Menggunakan Aspergilus Niger Terhadap Kandungan Bahan Kering (BK), Bahan Organik (BO) Dan Serat Kasar (SK). Rekasatwa: Jurnal Ilmiah Peternakan, vol. 1, no. 1, Art. no. 1, Feb. 2019, doi: 10.33474/rekasatwa.v1i1.2178.
  35. E. S. Ong, A. H. Rabbani, M. M. Habashy, O. M. Abdeldayem, E. G. Al-Sakkari, and E. R. Rene. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Environmental Pollution, vol. 291, p. 118160, Dec. 2021, DOI: 10.1016/j.envpol.2021.118160.
  36. S. Polprasert, O. Choopakar, and P. Elefsiniotis. Bioethanol production from pretreated palm empty fruit bunch (PEFB) using sequential enzymatic hydrolysis and yeast fermentation. Biomass and Bioenergy, vol. 149, p. 106088, Jun. 2021, DOI: 10.1016/j.biombioe.2021.106088.
  37. L. M. Rocha, B. S. Campanhol, and R. G. Bastos. Solid-State Cultivation of Aspergillus niger–Trichoderma reesei from Sugarcane Bagasse with Vinasse in Bench Packed-Bed Column Bioreactor. Appl Biochem Biotechnol, vol. 193, no. 9, pp. 2983–2992, Sep. 2021, DOI: 10.1007/s12010-021-03579-9.
  38. L. Yang, X. Zeng, and S. Qiao. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Animal Nutrition, vol. 7, no. 4, pp. 905–916, Dec. 2021, DOI: 10.1016/j.aninu.2021.06.002.
  39. D. Chmelová, B. Legerská, J. Kunstová, M. Ondrejovič, and S. Miertuš. The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol, vol. 38, no. 2, p. 21, Jan. 2022, DOI: 10.1007/s11274-021-03207-y.
  40. N. Ichikawa et al. Solid-State Fermented Okara with Aspergillus spp. Improves Lipid Metabolism and High-Fat Diet-Induced Obesity. Metabolites, vol. 12, no. 3, p. 198, Feb. 2022, DOI: 10.3390/metabo12030198.
  41. F. Muda, A. Asril, and Y. Usman. Analisis Konsumsi dan Koefisien Cerna Protein Kasar dan Serat Kasar Sapi Aceh Jantan dengan Imbangan Pemberian Konsentrat dan Hijauan di BPTU - HPT Indrapuri. Jurnal Ilmiah Mahasiswa Pertanian, vol. 5, no. 1, Art. no. 1, Feb. 2020, doi: 10.17969/jimfp.v5i1.13722.
  42. L. Yafetto. Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, vol. 8, no. 3, pp. 1–17, Mar. 2022, DOI: 10.1016/j.heliyon.2022.e09173.
  43. P. Xue et al. Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. LWT, vol. 161, p. 113387, May 2022, DOI: 10.1016/j.lwt.2022.113387.
  44. M. I. Alshelmani, T. C. Loh, H. L. Foo, A. Q. Sazili, and W. H. Lau. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on nutrient digestibility, intestinal morphology, and gut microflora in broiler chickens. Animal Feed Science and Technology, vol. 216, pp. 216–224, Jun. 2016, DOI: 10.1016/j.anifeedsci.2016.03.019.
  45. W. Pamungkas. Teknologi Fermentasi, Alternatif Solusi Dalam Upaya Pemanfaatan Bahan Pakan Lokal. Media Akuakultur, vol. 6, no. 1, Art. no. 1, Dec. 2011, doi: 10.15578/ma.6.1.2011.43-48.
  46. L. Sari and T. Purwadaria. Evaluate the effect of mutans Aspergillus niger to the nutritive value of fermentation at coconut meal and karnel palm meal. Biodiversitas Journal of Biological Diversity, vol. 5, no. 2, Art. no. 2, 2004, DOI: 10.13057/biodiv/d050202.
  47. S. Barrington and J.-W. Kim. Response surface optimization of medium components for citric acid production by Aspergillus niger NRRL 567 grown in peat moss. Bioresource Technology, vol. 99, no. 2, pp. 368–377, Jan. 2008, doi: 10.1016/j.biortech.2006.12.007.
  48. L. Zhou, S. Li, T. Zhang, W. Mu, and B. Jiang. Properties of a novel polydatin-β-d-glucosidase from Aspergillus niger SK34.002 and its application in enzymatic preparation of resveratrol. Journal of the Science of Food and Agriculture, vol. 96, no. 7, pp. 2588–2595, 2016, DOI: 10.1002/jsfa.7465.

Downloads

Published

2022-04-30

Issue

Section

Research Articles

How to Cite

[1]
Syamsuddin, Harapin Hafid, Rusli Badaruddin, Amiluddin Indi, Natsir Sandiah, " Addition of Aspergillus Niger Palm Waste (Animal Feed Alternative), International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 9, Issue 2, pp.195-203, March-April-2022. Available at doi : https://doi.org/10.32628/IJSRSET229231