Electron Paramagnetic Resonance and Optical Absorption Studies of Cu2+ Probe in Li2O-TeO2-CdO-As2O3-B2O3 Glasses

Authors

  • M. Venkata Narayana  Department of Physics and Electronics, Osmania University College for Women, Osmania University, Hyderabad, India
  • Kothwal Nagamani  Department of Physics, Dr. B. R. Ambedkar College, Baghlingampally, Hyderabad, India

Keywords:

Arsenate Glasses, Optical Absorption, Basicity, Spin Density, Susceptibility

Abstract

Electron paramagnetic resonance (EPR) and Optical absorption studies of xLi2O-(30-x)TeO2-5As2O3-5CdO-59B2O3-1CuO (where x=5, 10, 15, 20 and 25  mol%) glasses were carried out by introducing  ion as the spin probe. The glasses were prepared by the melt quenching method. The EPR spectra of all the glass samples were recorded at room temperature and at X-band frequencies. The EPR spectra exhibited similar spectral features. The spin-Hamiltonian parameters were calculated from the EPR spectra using standard procedures. The  ions are in well defined axial sites but subjected to small distortion leading to the broadening of the spectra. It was observed that . The spin-Hamiltonian parameter values indicated that the ground state of   ion is   orbital  and the site symmetry around Cu2+ ions is tetragonally distorted octahedral. The optical spectra were recorded in the range 300-800nm. By correlating EPR and optical data, the bond parameters were evaluated and the values show purely ionic nature for the in-plane σ bonding and in-plane π bonding. The out-of-plane π bonding is moderately covalent. The theoretical optical basicity parameter values were evaluated and it was observed that the value of Γσ increases, whereas Γπ decreases with the increase in optical basicity.

References

  1. B. Sujata, B.K. Chethana, R. Viswanatha, H. Nagabhshana, Phys. Chem. Glasses 57(2016)193-198.
  2. S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Results Phys. 2(2012)175-181.
  3. A. Dutta, T.P. Sinha, P. Jena, S. Adak, J. Mater. Res., 20(1) (2017) 46-52.
  4. C. Stehle, C. Vira, D. Vira, D. Hogan, S. Feller, M. Affatigato, 357(2011) 3143.
  5. N. Srinivasa Rao, M. Purnima and Syed Rahman, Bull.Mater. Sci., 29 4(2006) 365-370.
  6. R. P. S. Chakradhar, N. O. Gopal, J. Non-Cryst. Solids, 352 (2006) 3864-3871.
  7. B. Wang, S.P. Szu, M. Greenblatt, J. Non-Cryst. Solids, 358 (2012) 2581–2588.
  8. I. Siegel and J. A. Lorence, J. Chem. Phys.45 (1966) 2315.
  9. A. Yadav, S. Khasa, A. Hooda, M.S. Dahiya, Vib. Spectrosc. 71 (2014) 91– 97.
  10. B. Wang, S.P. Szu, M. Greenblatt, Physica B 438 (2014) 120–126.
  11. A. Ghosh and A. Pan, J. Alloys Compd. 552 (2013) 157-165.
  12. P. W. France, S. F. Carter and J. M. Parker, Phys. Chem. Glasses 27 (1986) 32-41.
  13. H. G. Hetch and T. S. Johnston, J. Chem. Phys. 46(1967) 23- 29.
  14. A. H. Dietzel, Phys. Chem. Glasses, 24(1983)172-180.
  15. D. L. Sidebottom, P. F. Green and R. K. Brow, J. Electron. Mater., 46(2)(2017)808-816.
  16. D. E. Day, J. Non-Cryst. Solids 27 (1976) 343-372.
  17. B.V. Ragavaiah, C. Laxmikanth, N. Veeriah, Optics Communications 235 (2004) 341-349.
  18. N. S. Rao, S. Bale, M. Purnima, S. Rahman, J. Phys.Chem. Solids68 (2007)1354-1358.
  19. L. E. Orgel, J. Chem. Phys. 23 (1955)1824-1829.
  20. C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, NY, 1962.
  21. A. H. Maki and B. R. Mc Garvey, J. Chem. Phys. 29 (1958)31-38.
  22. J.A. Duffy, Phys. Chem. Glasses 30 (1989) 1.
  23. V. Dimitrov, S. Sakka, J. Appl. Phys. 79 (1996) 1736.
  24. CH. Srinivasu, MA Sami, J. Mod. Phys. Conf. Ser. 22(2013)284-291.

Downloads

Published

2019-06-30

Issue

Section

Research Articles

How to Cite

[1]
M. Venkata Narayana, Kothwal Nagamani, " Electron Paramagnetic Resonance and Optical Absorption Studies of Cu2+ Probe in Li2O-TeO2-CdO-As2O3-B2O3 Glasses, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 3, pp.458-462, May-June-2019.