An Analytical Review on Packet Analysis for Network Forensics and Deep Packet Inspection in Network
Keywords:
Packet analysis, Deep packet inspection Network forensics, Packet sniffer Wireshark, Pcap, Digital evidence Network monitoring Intrusion detectionAbstract
Packet analysis is a fundamental traceback approach in network forensics. It can play back even the entirety of the network traffic for a specific point in time, provided that the packet details captured are sufficiently detailed. This can be utilised to discover evidence of malicious online behaviour, data breaches, unauthorised website access, malware infection, and attempted intrusions, as well as to reconstruct image files, documents, email attachments, and other types of data that have been transmitted across the network. This article offers a detailed study of the use of packet analysis in network forensics, including deep packet inspection. It also gives a discussion of AI-powered packet analysis algorithms that have enhanced network traffic classification and pattern identification capabilities. In light of the fact that not all information obtained through a network can be used as evidence in a legal proceeding, a comprehensive list of the kinds of digital information that might be allowed has been compiled. We take a look at the capabilities of both physical appliances and software packet analyzers from the point of view of their possible use in forensic investigations of computer networks.
References
- Afanasyev, M., Kohno, T., Ma, J., Murphy, N., Savage, S., Snoeren, A.C., Voelker, G.M., 2011. Privacy-preserving network forensics. Commun. ACM 54 (5), 78e87. https://doi.org/10.1145/1941487.1941508.
- Agrawal, N., Tapaswi, S., 2017. The performance analysis of honeypot based intru- sion detection system for wireless network. Int. J. Wirel. Inf. Netw. 24 (1), 14e26. https://doi.org/10.1007/s10776-016-0330-3.
- Al-Duwairi, B., Govindarasu, M., 2006. Novel hybrid schemes employing packet marking and logging for IP traceback. IEEE T. Parall. Distr. 17 (5), 403e418. https://doi.org/10.1109/TPDS.2006.63.
- Alhawi, O.M.K., Baldwin, J., Dehghantanha, A., 2018. Leveraging machine learning techniques for Windows ransomware network traffic detection. In: Dehghantanha, A., Conti, M., Dargahi, T. (Eds.), Cyber Threat Intelligence. Springer, Cham, pp. 93e106. https://doi.org/10.1007/978-3-319-73951-9_5.
- Alshammari, R., Zincir-Heywood, A.N., 2015. Identification of VoIP encrypted traffic using a machine learning approach. J. King Saud Univ. Comput. Inf. Sci. 27 (1), 77e92. https://doi.org/10.1016/j.jksuci.2014.03.013.
- Alsmadi, I., Burdwell, R., Aleroud, A., Wahbeh, A., Al-Qudah, M., Al-Omari, A., 2018. Network forensics: lesson plans. Practical Information Security: A Competency- Based Education Course. Springer, Cham, pp. 245e282. https://doi.org/10.1007/978-3-319-72119-4_11.
- Ansari, S., Rajeev, S.G., Chandrashekar, H.S., 2003. Packet sniffing: a brief intro- duction. IEEE Potentials 21 (5), 17e19. https://doi.org/10.1109/MP.2002.1166620.
- Bellovin, S.M., Leech, M., 2000. ICMP traceback messages. https://www.ietf.org/ proceedings/51/I-D/draft-ietf-itrace-00.txt.
- Ben-Asher, N., Oltramari, A., Erbacher, R.F., Gonzalez, C., 2015. Ontology-based adaptive systems of cyber defense. In: Laskey, K.B., Emmons, I., Costa, P.C.G., Oltramari, A. (Eds.), Proceedings of the Semantic Technology for Intelligence, Defense, and Security. RWTH Aachen, Aachen, pp. 34e41. http://ceur-ws.org/ Vol-1523/STIDS_2015_T05_BenAsher_etal.pdf.
- Beverly, R., Garfinkel, S., Cardwell, G., 2011. Forensic carving of network packets and associated data structures. Digit. Invest. 8, S78eS89. https://doi.org/10.1016/ j.diin.2011.05.010.
- Bhandari, A., Gautam, S., Koirala, T.K., Islam, M.R., 2017. Packet sniffing and network traffic analysis using TCPda new approach. In: Kalam, A., Das, S., Sharma, K. (Eds.), Advances in Electronics, Communication and Computing. Springer, Singapore, pp. 273e280. https://doi.org/10.1007/978-981-10-4765-7_28.
- Boukhtouta, A., Mokhov, S.A., Lakhdari, N.-E., Debbabi, M., Paquet, J., 2016. Network malware classification comparison using DPI and flow packet headers.
- J. Comput. Virol. Hacking Tech. 12 (2), 69e100. https://doi.org/10.1007/s11416- 015-0247-x.
- Broadway, J., Turnbull, B., Slay, J., 2008. Improving the analysis of lawfully inter- cepted network packet data captured for forensic analysis. In: Jakoubi, S., Tjoa, S., Weippl, E.R. (Eds.), Third International Conference on Availability, Reliability and Security. IEEE Computer Society, Los Alamitos, CA, USA, pp. 1361e1368. https://doi.org/10.1109/ARES.2008.122.
- Burch, H., Cheswick, B., 2000. Tracing anonymous packets to their approximate source. Proceedings of the 14th USENIX Conference on System Administration. USENIX, Berkeley, CA, USA, pp. 319e328. https://www.usenix.org/legacy/ publications/library/proceedings/lisa2000/full_papers/burch/burch_html/.
- Burschka, S., Dupasquier, B., 2016. Tranalyzer: versatile high performance network traffic analyser. 2016 IEEE Symposium Series on Computational Intelligence. IEEE, Piscataway, NJ, USA. https://doi.org/10.1109/SSCI.2016.7849909.
- Carvalho, D.A., Pereira, M., Freire, M.M., 2009. Towards the detection of encrypted BitTorrent traffic through deep packet inspection. In: S´le˛ zak, D., Kim, T.-H.,
- Fang, W.-C., Arnett, K.P. (Eds.), Security Technology. Springer, Heidelberg, pp. 265e272. https://doi.org/10.1007/978-3-642-10847-1_33.
- Chapman, C., 2016. Using Wireshark and TCP dump to visualize traffic. In: Network Performance and Security: Testing and Analyzing Using Open Source and Low- Cost Tools. Syngress, Cambridge, MA, USA. https://doi.org/10.1016/B978-0-12- 803584-9.00007-X.
- Clarke, N., Li, F., Furnell, S., 2017. A novel privacy preserving user identification approach for network traffic. Comput. Secur. 70, 335e350. https://doi.org/ 10.1016/j.cose.2017.06.012.
- Cui, Y., Xue, J., Wang, Y., Liu, Z., Zhang, J., 2018. Research of Snort rule extension and APT detection based on APT network behavior analysis. In: Zhang, H., Zhao, B., Yan, F. (Eds.), Trusted Computing and Information Security. Springer, Singapore, pp. 51e64. https://doi.org/10.1007/978-981-13-5913-2_4.
- Das, R., Tuna, G., 2017. Packet tracing and analysis of network cameras with Wireshark. In: Genge, B., Haller, P. (Eds.), 5th International Symposium on Digital Forensic and Security. IEEE, Piscataway, NJ, USA. https://doi.org/10.1109/ ISDFS.2017.7916510.
- Dong, S., Jain, R., 2019. Flow online identification method for the encrypted Skype. J. Netw. Comput. Appl. 132, 75e85. https://doi.org/10.1016/j.jnca.2019.01.007.
- Duncan, R., Jungck, P., 2009. packetC language for high performance packet pro- cessing. 11th IEEE International Conference on High Performance Computing and Communications. IEEE Computer Society, Los Alamitos, CA, USA, pp. 450e457. https://doi.org/10.1109/HPCC.2009.89.
- Garfinkel, S.L., 2013. Passive TCP Reconstruction and Forensic Analysis with Tcpflow. Technical Report. Naval Postgraduate School. https://core.ac.uk/download/pdf/ 36728558.pdf.
- Gong, C., Sarac, K., 2005. IP traceback based on packet marking and logging. IEEE International Conference on Communications. IEEE, Piscataway, NJ, USA, pp. 1043e1047. https://doi.org/10.1109/ICC.2005.1494507.
- Goyal, P., Goyal, A., 2017. Comparative study of two most popular packet sniffing tools-Tcpdump and Wireshark. 9th International Conference on Computational Intelligence and Communication Networks. IEEE, pp. 77e81. https://doi.org/ 10.1109/CICN.2017.8319360.
- Guo, Y., Gao, Y., Wang, Y., Qin, M., Pu, Y., Wang, Z., Liu, D., Chen, X., Gao, T., Lv, T.,
- Fu, Z., 2017. DPI & DFI: a malicious behavior detection method combining deep packet inspection and deep flow inspection. Procedia Engineer. 174, 1309e1314. https://doi.org/10.1016/j.proeng.2017.01.276.
- Hong, X., Hu, C., Wang, Z., Wang, G., Wan, Y., 2012. VisSRA: visualizing Snort rules and alerts. In: Tomar, G.S., Sharma, T.N., Bhatnagar, D. (Eds.), Fourth Interna- tional Conference on Computational Intelligence and Communication Net- works. IEEE Computer Society, Los Alamitos, CA, USA, pp. 441e444. https:// doi.org/10.1109/CICN.2012.207.
- Huang, J., Zhu, B., Chen, Z., 2012. Video traffic detection method for deep packet inspection. In: Jin, D., Lin, S. (Eds.), Advances in Computer Science and Infor- mation Engineering, 2. Springer, Heidelberg, pp. 135e140. https://doi.org/ 10.1007/978-3-642-30223-7_22.
- Hurd, D., 2018. Endace fusion partners: redefining cybersecurity with Cisco. https:// youtu.be/iRagH8y0GBA.
- Indira, B., Valarmathi, K., Devaraj, D., 2019. An approach to enhance packet classification performance of software-defined network using deep learning. Soft Comput. 23 (18), 8609e8619. https://doi.org/10.1007/s00500-019-03975-8.
- Islam, M.R., Koirala, T.K., Khatun, F., 2018. Network traffic analysis and packet sniffing using UDP. In: Bera, R., Sarkar, S.K., Chakraborty, S. (Eds.), Advances in Communication, Devices and Networking. Springer, Singapore, pp. 907e914. https://doi.org/10.1007/978-981-10-7901-6_97.
- Jandaeng, C., 2016. Embedded packet logger for network monitoring system. In: Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (Eds.), Advanced Computer and Communication Engineering Technology. Springer, Cham, pp. 1093e1102. https://doi.org/10.1007/978-3-319-24584-3_93.
- Johansen, G., 2017. Acquiring host-based evidence. In: Digital Forensics and Incident Response: an Intelligent Way to Respond to Attacks. Packt Publishing, Bir- mingham, UK.
- Joshi, R., Pilli, E.S., 2016. Network forensic tools. In: Fundamentals of Network Fo- rensics. Springer, London, pp. 71-93.
- Jungck, P., Duncan, R., Mulcahy, D., 2011. packetC Programming. Apress. https:// doi.org/10.1007/978-1-4302-4159-1.
- Kaushik, A.K., Pilli, E.S., Joshi, R.C., 2010. Network forensic analysis by correlation of attacks with network attributes. In: Das, V.V., Vijaykumar, R. (Eds.), Information and Communication Technologies. Springer, Heidelberg, pp. 124e128. https:// doi.org/10.1007/978-3-642-15766-0_18.
- Kim, H.S., Kim, H.K., 2011. Network forensic evidence acquisition (NFEA) with packet marking. In: Ninth International Symposium on Parallel and Distributed Processing with Applications Workshops. IEEE Computer Society, Los Alamitos, CA, USA, pp. 388e393. https://doi.org/10.1109/ISPAW.2011.27.
- Kim, H., Kim, E., Kang, S., Kim, H.K., 2015. Network forensic evidence generation and verification scheme (NFEGVS). Telecommun. Syst. 60 (2), 261e273. https:// doi.org/10.1007/s11235-015-0028-3.
- Kim, Y.-H., Konow, R., Dujovne, D., Turletti, T., Dabbous, W., Navarro, G., 2015. PcapWT: an efficient packet extraction tool for large volume network traces. Comput. Network. 79, 91e102. https://doi.org/10.1016/j.comnet.2014.12.007.
- Kumar, A., Lim, T.J., 2020. Early detection of Mirai-like IoT bots in large-scale net- works through sub-sampled packet traffic analysis. In: Arai, K., Bhatia, R. (Eds.), Advances in Information and Communication. Springer, Cham, pp. 847e867. https://doi.org/10.1007/978-3-030-12385-7_58.
- Lee, Y., Kang, W., Lee, Y., 2011. A Hadoop-based packet trace processing tool. In: Domingo-Pascual, J., Shavitt, Y., Uhlig, S. (Eds.), Traffic Monitoring and Analysis. Springer, Heidelberg, pp. 51e63. https://doi.org/10.1007/978-3-642-20305-3_5. Lee, C., Park, M., Lee, J., Joe, I., 2012. Design and implementation of packet analyzer for IEC 61850 communication networks in smart grid. In: Kim, T., Ko, D., Vasilakos, T., Stoica, A., Abawajy, J. (Eds.), Computer Applications for Commu- nication, Networking, and Digital Contents. Springer, Heidelberg, pp. 33e40.
- https://doi.org/10.1007/978-3-642-35594-3_5.
- Li, J., Su, J., Wang, X., Sun, H., Chen, S., 2017. CloudDPI: cloud-based privacy-pre- serving deep packet inspection via reversible sketch. In: Wen, S., Wu, W., Castiglione, A. (Eds.), Cyberspace Safety and Security. Springer, Cham, pp. 119e134. https://doi.org/10.1007/978-3-319-69471-9_9.
- Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M., 2019. Deep Packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput. https://doi.org/10.1007/s00500-019-04030-2.
- Lovanshi, M., Bansal, P., 2019. Comparative study of digital forensic tools. In: Shukla, R.K., Agrawal, J., Sharma, S., Tomer, G.S. (Eds.), Data, Engineering and Applications. Springer, Singapore, pp. 195e204. https://doi.org/10.1007/978- 981-13-6351-1_15.
- Manesh, T., Brijith, B., Singh, M.P., 2011. An improved approach towards network forensic investigation of HTTP and FTP protocols. In: Nagamalai, D., Renault, E., Dhanuskodi, M. (Eds.), Advances in Parallel Distributed Computing. Springer, Heidelberg, pp. 385e392. https://doi.org/10.1007/978-3-642-24037-9_38.
- Mielczarek, W., Mon´, T., 2015. USB data capture and analysis in Windows using USBPcap and Wireshark. In: Gaj, P., Kwiecien´, A., Stera, P. (Eds.), Computer Networks. Springer, Cham, pp. 431e443. https://doi.org/10.1007/978-3-319- 19419-6_41.
- Murugesan, V., Selvaraj, M.S., Yang, M.-H., 2018. HPSIPT: a high-precision single- packet IP traceback scheme. Comput. Network. 143, 275e288. https://doi.org/ 10.1016/j.comnet.2018.07.013.
- Ndatinya, V., Xiao, Z., Manepalli, V.R., Meng, K., Xiao, Y., 2015. Network forensics analysis using Wireshark. Int. J. Secur. Netw. 10 (2), 91e106. https://doi.org/ 10.1504/IJSN.2015.070421.
- Nikkel, B.J., 2005. Generalizing sources of live network evidence. Digit. Invest. 2 (3), 193e200. https://doi.org/10.1016/j.diin.2005.08.001.
- Ning, J., Pelechrinis, K., Krishnamurthy, S.V., Govindan, R., 2013. On the trade-offs between collecting packet level forensic evidence and data delivery perfor- mance in wireless networks. In: Kim, D.-I., Mueller, P. (Eds.), 2013 IEEE Inter- national Conference on Communications. IEEE, Piscataway, NJ, USA, pp. 1688e1693. https://doi.org/10.1109/ICC.2013.6654760.
- Ohm, P., 2014. Should sniffing Wi-Fi be illegal? IEEE Secur. Priv. 12 (1), 73e76. https://doi.org/10.1109/MSP.2014.14.
- Orebaugh, A., Ramirez, G., Burke, J., Pesce, L., Wright, J., Morris, G., 2006. Wireshark & Ethereal Network Protocol Analyzer Toolkit. Syngress, Rockland, MA, USA. https://www.sciencedirect.com/book/9781597490733/.
- Parra, G.L.T., Rad, P., Choo, K.-K.R., 2019. Implementation of deep packet inspection in smart grids and industrial Internet of Things: challenges and opportunities. J. Netw. Comput. Appl. 135, 32e46. https://doi.org/10.1016/j.jnca.2019.02.022.
- Parvat, T.J., Chandra, P., 2015. A novel approach to deep packet inspection for intrusion detection. Procedia Comput. Sci. 45, 506e513. https://doi.org/10.1016/ j.procs.2015.03.091.
- Rahman, M., Khalib, Z.I.A., Ahmad, R.B., 2009. Performance evaluation of PNtMS: a portable network traffic monitoring system on embedded Linux platform. In: Zhou, J., Zhou, X. (Eds.), 2009 International Conference on Computer Engi- neering and Technology, II. IEEE Computer Society, Los Alamitos, CA, USA, pp. 108e113. https://doi.org/10.1109/ICCET.2009.37.
- Richter, P., Wohlfart, F., Vallina-Rodriguez, N., Allman, M., Bush, R., Feldmann, A., Kreibich, C., Weaver, N., Paxson, V., 2016. A multi-perspective analysis of carrier- grade NAT deployment. In: Proceedings of the 2016 Internet Measurement Conference. ACM, New York, pp. 215e229. https://doi.org/10.1145/ 2987443.2987474.
- Pimenta Rodrigues, G.A., De Oliveira Albuquerque, R., Gomes de Deus, F.E., De Sousa Jr., R.T., De Oliveira Júnior, G.A., García Villalba, L.J., Kim, T.-H., 2017. Cybersecurity and network forensics: analysis of malicious traffic towards a honeynet with deep packet inspection. Appl. Sci. 7 (10), 1082e1110. https:// doi.org/10.3390/app7101082.
- Rounsavall, R., 2017. Full network traffic capture and replay. In: Vacca, J.R. (Ed.), Computer and Information Security Handbook, third ed. Morgan Kaufmann, Cambridge, MA, USA. https://doi.org/10.1016/B978-0-12-803843-7.00062-4.
- Salim, M.M., Rathore, S., Park, J.H., 2019. Distributed denial of service attacks and its defenses in IoT: a survey. J. Supercomput. https://doi.org/10.1007/s11227-019- 02945-z.
- Sanders, C., 2017. Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems. No Starch Press, San Francisco.
- Savage, S., Wetherall, D., Karlin, A., Anderson, T., 2001. Network support for IP traceback. IEEE ACM Trans. Netw. 9 (3), 226-237.
- Senthivel, S., Ahmed, I., Roussev, V., 2017. SCADA network forensics of the PCCC protocol. Digit. Invest. 22, S57eS65. https://doi.org/10.1016/j.diin.2017.06.012.
- Shah, S.A.R., Issac, B., 2018. Performance comparison of intrusion detection systems and application of machine learning to Snort system. Future Gener. Comput. Syst. 80, 157e170. https://doi.org/10.1016/j.future.2017.10.016.
- Shimonski, R., 2013. The Wireshark Field Guide. Syngress. https://doi.org/10.1016/ C2012-0-07287-0.
- Sikos, L.F. (Ed.), 2018. AI in Cybersecurity. Springer, Cham. https://doi.org/10.1007/ 978-3-319-98842-9.
- Sikos, L.F., 2019. Knowledge representation to support partially automated honey- pot analysis based on Wireshark packet capture files. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (Eds.), Intelligent Decision Technologies 2019. Springer, Singapore, pp. 345e351. https://doi.org/10.1007/978-981-13-8311-3_30.
- Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent, S.T., Strayer, W.T., 2001. Hash-based IP traceback. In: SIGCOMM ’01. ACM. https:// doi.org/10.1145/383059.383060.
- Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Schwartz, B., Kent, S.T., Strayer, W.T., 2002. Single-packet IP traceback. IEEE/ACM Trans. Netw. 10 (6), 721e734. https://doi.org/10.1109/TNET.2002.804827.
- Song, D.X., Perrig, A., 2001. Advanced and authenticated marking schemes for IP traceback. In: Proceedings of IEEE INFOCOM 2001, 3. IEEE, Piscataway, NJ, USA, pp. 878e886. https://doi.org/10.1109/INFCOM.2001.916279.
- Stalla-Bourdillon, S., Papadaki, E., Chown, T., 2014. From porn to cybersecurity passing by copyright: how mass surveillance technologies are gaining legiti- macy … the case of deep packet inspection technologies. Comput. Law Secur. Rep. 30 (6), 670e686. https://doi.org/10.1016/j.clsr.2014.09.006.
- Stallings, W., Case, T.L., 2012. Business Data Communications: Infrastructure, Networking and Security. Pearson, Upper Saddle River, NJ, USA.
- Stergiopoulos, G., Talavari, A., Bitsikas, E., Gritzalis, D., 2018. Automatic detection of various malicious traffic using side channel features on TCP packets. In: Lopez, J., Zhou, J., Soriano, M. (Eds.), Computer Security. Springer, Cham, pp. 346-362.
- Stone, R., 2000. CenterTrack: an IP overlay network for tracking DoS floods. In: Proceedings of the 9th USENIX Security Symposium. USENIX, Berkeley, CA, USA, pp. 199e212. https://www.usenix.org/legacy/events/sec2000/full_papers/ stone/stone.pdf.
- Sy, D., Bao, L., 2006. CAPTRA: coordinated packet traceback. In: 5th International Conference on Information Processing in Sensor Networks. ACM, New York, pp. 152e159. https://doi.org/10.1145/1127777.1127803.
- Thomas, B., Mullins, B., Peterson, G., Mills, R., 2011. An FPGA system for detecting malicious DNS network traffic. In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics VII. Springer, Heidelberg, pp. 195e207. https://doi.org/10.1007/ 978-3-642-24212-0_15.
- Turnbull, B., Slay, J., 2007. Wireless forensic analysis tools for use in the electronic evidence collection process. In: Ralph, H., Sprague, J. (Eds.), Proceedings of the 40th Annual Hawaii International Conference on System Sciences. IEEE Com- puter Society, Los Alamitos, CA, USA. https://doi.org/10.1109/HICSS.2007.617.
- van de Wiel, E., Scanlon, M., Le-Khac, N.-A., 2018. Enabling non-expert analysis of large volumes of intercepted network traffic. In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics XIV. Springer, Cham, pp. 183e197. https://doi.org/ 10.1007/978-3-319-99277-8_11.
- Vukojevi´c, S., 2015. Violation of user privacy by IPTV packet sniffing in home network. In: Biljanovic, P., Butkovic, Z., Skala, K., Mikac, B., Cicin-Sain, M., Sruk, V., Ribaric, S., Gros, S., Vrdoljak, B., Mauher, M., Sokolic, A. (Eds.), 38th International Convention on Information and Communication Technology, Electronics and Microelectronics. IEEE, pp. 1338e1343. https://doi.org/10.1109/ MIPRO.2015.7160482.
- Wang, M.-H., Yu, C.-M., Lin, C.-L., Tseng, C.-C., Yen, L.-H., 2014. KPAT: a kernel and protocol analysis tool for embedded networking devices. In: Jamalipour, A., Deng, D.-J. (Eds.), 2014 IEEE International Conference on Communications. IEEE, Piscataway, NJ, USA, pp. 1160e1165. https://doi.org/10.1109/ICC.2014.6883478.
- Xiang, Y., Zhou, W., Guo, M., 2008. Flexible deterministic packet marking: an IP traceback system to find the real source of attacks. IEEE T. Parall. Distr. 20 (4), 567e580. https://doi.org/10.1109/TPDS.2008.132.
- Yang, J., Zhang, Y., King, R., Tolbert, T., 2018. Sniffing and chaffing network traffic in stepping-stone intrusion detection. In: Barolli, L., Takizawa, M., Enokido, T., Ogiela, M.R., Ogiela, L., Javaid, N. (Eds.), 32nd International Conference on Advanced Information Networking and Applications Workshops. IEEE Com- puter Society, Los Alamitos, CA, USA, pp. 515e520. https://doi.org/10.1109/ WAINA.2018.00137.
- Yin, C., Wang, H., Wang, J., 2018. Network data stream classification by deep packet inspection and machine learning. In: Park, J.J., Loia, V., Choo, K.-K.R., Yi, G. (Eds.), Advanced Multimedia and Ubiquitous Engineering. Springer, Singapore, pp. 245e251. https://doi.org/10.1007/978-981-13-1328-8_31.
- Yin, C., Wang, H., Yin, X., Sun, R., Wang, J., 2018. Improved deep packet inspection in data stream detection. J. Supercomput. 75 (8), 4295e4308. https://doi.org/ 10.1007/s11227-018-2685-y.
- Yoon, J., DeBiase, M., 2018. Real-time analysis of big network packet streams by learning the likelihood of trusted sequences. In: Chin, F.Y.L., Chen, C.L.P., Khan, L., Lee, K., Zhang, L.-J. (Eds.), Big Data e BigData 2018. Springer, Cham, pp. 43e56. https://doi.org/10.1007/978-3-319-94301-5_4.
- Yu, C., Lan, J., Xie, J., Hu, Y., 2018. QoS-aware traffic classification architecture using machine learning and deep packet inspection in SDNs. Procedia Comput. Sci. 131, 1209e1216. https://doi.org/10.1016/j.procs.2018.04.331.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.