Synthesis of a Novel Conducting Polymer-Based Zirconia Nanohybrid and exploration of their Microstructural, Optical and Dielectric Properties

Authors

  • Ashis Dey  Department of Chemistry, Sarsuna College, Kolkata, India

Keywords:

Nanocomposites, Conducting Polyaniline, Dielectric Permittivity, Optical Band Gap

Abstract

Conducting polymer provides a captivating type of environment for various inorganic structures resulting in the generation of exciting properties in the nanocomposite owing to the mutual interactions between the two and this provides interesting dimensions for the development of new multifunctional devices. In order to achieve novel properties of ZrO2 nanoparticles, nanocomposites of ZrO2 with Polyaniline (PANI) were prepared through in-situ method of polymerization using ZrO2/pyrrole dispersions. Firstly, nanoparticles of zirconia (ZrO2) have been synthesized by a novel two-reverse emulsion technique and combined with polypyrrole (ANI) to form ZrO2–PANI nanocomposites. The structural and optical properties of ZrO2/PANI nanocomposites were investigated comprehensively by X-Ray diffraction (XRD), UV-visible spectroscopy and Fourier-transform infrared spectroscopy (FTIR). XRD and FTIR reveal the presence of tetragonal phase of ZrO2 nanoparticles in nanocomposites, whereas UV-Visible spectra indicate the presence of different electronic levels. The optical band gap of zirconia decreases with increase in polymer concentration. From scanning and transmission electron microscopic studies, particle size and morphology of the nanocomposites and ZrO2 particles were determined. The electrical inhomogeneity induces two conduction processes, which are attributed to grain and grain boundary effects. A very large dielectric permittivity of about 2500 at room temperature has been observed for the composite with highest content of zirconia. The large dielectric permittivity arises due to interfacial polarization involving heterogeneous behavior of semiconducting zirconia and conducting polyaniline.

References

  1. R. Gangopadhyay and A. De, Chem. Mater; 2000,12, 608.
  2. H. S. Nalwa (editor) Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, Chapter H conducting Polymer Nanocomposites, R. Gangopadhyay and A. De. (American Scientific Publishers, 2003).
  3. Li, M., Zhang, Y., Yang, L., Liu, Y., Ma, J.: Excellent electrochemical performance of homogeneous polypyrrole/graphene composites as electrode material for supercapacitors. J. Mater. Sci.: Mater. Electron. 26, 485–492 (2015). https://doi. org/10.1007/s10854-014-2425-x
  4. Lota, K., Lota, G., Sierczynska, A., Acznik, I.: Carbon/ polypyrrole composites for electrochemical capacitors. Synth. Met. 203, 44–48 (2015). https://doi.org/10.1016/j.synth met.2015.02.014
  5. Gao, Y., Yip, H.-L., Chen, K.-S., O’Malley, K.M., Acton, O., Sun, Y., Ting, G., Chen, H., Jen, A.K.-Y.: Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. Adv. Mater. 23, 1903–1908 (2011). https://doi.org/10.1002/adma.201100065
  6. Alvi, F., Ram, M.K., Basnayaka, P.A., Stefanakos, E., Goswami, Y., Kumar, A.: Graphene–polyethylenedioxythiophene conducting polymer nanocomposite-based supercapacitor. Electrochim. Acta 56, 9406–9412 (2011). https://doi.org/10.1016/j.elect acta.2011.08.024
  7. Sekkarapatti Ramasamy, M., Nikolakapoulou, A., Raptis, D., Dracopoulos, V., Paterakis, G., Lianos, P.: Reduced graphene oxide/Polypyrrole/PEDOT composite flms as efcient Pt-free counter electrode for dye-sensitized solar cells. Electrochim. Acta 173, 276–281 (2015). https://doi.org/10.1016/j.elect acta.2015.05.043
  8. 25. Huang, L., Huang, Y., Liang, J., Wan, X., Chen, Y.: Graphene based conducting inks for direct inkjet printing of fexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675–684 (2011). https://doi. org/10.1007/s12274-011-0123-z
  9. Randriamahazaka, H., Ghilane, J.: Electrografting and controlled surface functionalization of carbon-based surfaces for electroanalysis. Electroanalysis 28, 13–26 (2016). https://doi. org/10.1002/elan.201500527
  10. Yang, N., Swain, G.M., Jiang, X.: Nanocarbon electrochemistry and electroanalysis: current status and future perspectives. Electroanalysis 28, 27–34 (2016). https://doi.org/10.1002/ elan.201500577
  11. G. D. Wilk, R. M. Wallace, J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
  12. V. V. Afanasev, M. Houssa, A. Stesmans, M. M. Heyns, Appl. Phys. Lett. 78, 3073 (2001).
  13. S. P. S. Badwal, Appl. Phys. A 50, 449 (1990).
  14. T. M. Miller, V. H. Grassian, J. Am. Chem. Soc. 117, 10969 (1995).
  15. J. F. Haw, J. Zhang, K. Shimizu, T. N. Venkatraman, D. P. Luigi, W. Song, D. H. Barich, J. B. Nicholas, J. Am. Chem. Soc. 122, 12561 (2000).
  16. T. Uchikoshi, Y. Sakka, K. Ozawa and K. Hiraga, J. Mater. Res. 13, 840 (1998).
  17. K. Schindler, D. Schmeisser, U. Vohrer, H. D. Wiemhofer and W. Gopel, Sens. Actuators. 17, 555 (1989).
  18. R. C. Garvie, J. Phys. Chem. 69, 1238 (1965).
  19. R. C. Garvie, J. Phys. Chem. 82, 218 (1978)
  20. F. Wu and S. Wu, J. Mater. Sci. 25, 970 (1990).
  21. S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (editor) Science and Technology of Zirconia V, P. Kountouros and G. Petzow (Technomic Publishing Company, Lancaster, PA, 1993, p30).
  22. H. L. Tuller, Solid State Ionics. 131, 143 (2000).
  23. X. Guo, E. Vasco, S. Mi, K. Szot, E. Wachsman and R. Waser, Acta. Mater. 53, 5161 (2005).
  24. S. S. Ray and M. Biswas, Synth. Met., 108, 231 (2000).
  25. A. De, A. Das and S. Lahiri, Synth. Met., 144, 303 (2004).
  26. A. Bhattachayya, K.M. Ganguly, A. De, S. Sarkar, Mater. Res. Bull., 31, 527 (1996).
  27. Y. X. Pang and X. Bao, J. Mater. Chem., 12, 3699 (2002).
  28. L. Gao, H. C. Qiao, H. B. Qiu and D. S. Yan, J. Eur. Ceram. Soc., 16, 437 (1996).
  29. K. Osseo-Asare, Microemulsion-mediated Synthesis of Nanosize Oxide Materials, Handbook of Microemulsion Science and Technology, P. Kumar and K. L. Mittal (editor), Marcel Dekker Inc., New York, 1999.
  30. J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang and A. G. Macdiarmid, Macromolecules 24, 779 (1991).
  31. H. P. Klug and L. E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, John Wiley and Sons, New York, 1954, p491
  32. R. C. Garvie, J. Phys. Chem. 69, 1238 (1965).
  33. R. C. Garvie and M. F. Goss, J. Mater. Sci., 21, 1253 (1986).
  34. A. Raghunathan, T. S. Natarajan, G. Rangarajan, S. K. Dhawan and D. C. Trivedi, Phy. Rev. B., 47, 13189 (1993).
  35. S. Stafstrom, J. L. Bredas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang and A. G. MacDiarmid, Phy. Rev. Lett., 59, 1464 (1987).
  36. A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk and N. Serpone, Langmuir 14, 5011(1998).
  37. N. Serpone, D. Lawless and R. Khairutdinov, J. Phys . Chem 99, 16646 (1995).
  38. J. I. Pankove, Optical Processes in Semiconductors, Prentice Hall, New Jersy,1971.
  39. C. K. Kwok and C. R. Aita, J. Appl. Phys., 66, 2756 (1989).
  40. C. Morant, A. Fernandez and A. R. Gonzalez-Elipe, L. Soriano, A. Stampfl, A. M. Bradshaw and J. M. Sanz, Phy. Rev. B., 52, 11711 (1995).
  41. G. K. Sidhu and R. Kumar, Materials Science and Engineering 360 (2018) 012038 https://doi:10.1088/1757-899X/360/1/012038
  42. H. Ozkazanc, Materials Research Bulletin, 73 226 (2016) https://doi.org/10.1016/j.materresbull.2015.09.009

Downloads

Published

2018-08-30

Issue

Section

Research Articles

How to Cite

[1]
Ashis Dey, " Synthesis of a Novel Conducting Polymer-Based Zirconia Nanohybrid and exploration of their Microstructural, Optical and Dielectric Properties, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 9, pp.656-663, July-August-2018.