Chemical Synthesis, Structural and Superparamagnetic behavior of Zinc Doped Cadmium Nano Ferrite Applications

Authors

  • M. Venkata Narayana  Department of Physics and Electronics, Osmania University College for Women, Osmania University, Hyderabad, India

Keywords:

Sol-gel Method; XRD; SEM; TEP; Magnetic behavior (5k and 300k).

Abstract

The composition of Cd Znx Fe2-xO4 (x = 0, 0.005, 0.010, 0.015) nano-ferrites that were synthesised with Zn doping Cd doping were examined utilising the Sol-gel method. The single-phase cubic spinel structure was verified by XRD investigation, and SEM Micro grain pictures in the nanometer range are displayed. These images are typical of spinel nano-ferrites. The crystallite's estimated size has been determined to be between 14 and 19 nanometers (nm) in size. While the crystallite size is shown to grow with zinc content, the lattice parameter (a=b=c) decreases. The VSM technique was used to measure magnetization (Vibrating Sample Magnetometer). By substituting zinc, hard ferrite material may be converted to soft ferrite, used in high-density recording media, and microwave devices. The ZFC & FC curves at low temperature (5k) expressed the blocking temperature from 174 to 209 K.

References

  1. S. Joshi, M. Kumar, S. Chokers, A. Kumar, M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4, J. Magn. Magn. Mater. 426(2017)252–263. doi:10.1016/j. jmmm.2016.11.090.
  2. Aakash, A. Roy Chowdhury, D. Das, S. Mukherjee, Effect of doping of chromium ions on the structural and magnetic properties of nickel ferrite, Ceram. Int. 426(2016)7742–7747. doi:10.1016/j. ceramint.2016.01.188.
  3. Y. Wang, Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications, Mater. Today. Adv. 8(2020)100119. doi: 10.1016/j.mtadv.2020.100119.
  4. G. Aygar, M. Kaya, N. Ozkan, S. Kocabiyik, M. Volkan, Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins, J. Phys. Chem. Solids. 87(2015)64–71. doi:10.1016/j. jpcs.2015.08.005.
  5. T. Jahanbin, M. Hashim, K.A. Matori, S.B. Waje, Influence of sintering temperature on the structural, magnetic and dielectric properties of Ni0.8Zn0.2Fe2O 4 synthesized by co-precipitation route, J. Alloys Compd. 503(2010)111–117. doi: 10.1016/j.jallcom.2010.04.212.
  6. A.S. Dzunuzovic, Structure and properties of Ni-Zn ferrite obtained by auto- combustion method, J. Magn. Magn. Mater. 374(2015)245–251. doi: 10.1016/j.jmmm.2014.08.047.
  7. S. Zahi, M. Hashim, A.R. Daud, Synthesis, magnetic properties and microstructure of Ni-Zn ferrite by sol-gel technique, J. Magn. Magn. Mater. 308(2017)177–182. doi:10.1016/j. jmmm.2006.05.033.
  8. C.A. Palacio Gomez, C.A. Barrero Meneses, A. Matute, Structural parameters and cation distributions in solid state synthesized Ni-Zn ferrites, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 236–237(2017)48–55. doi: 10.1016/j.mseb.2018.12.003.
  9. M. Sorescu, L. Diamandescu, R. Peelamedu, R. Roy, P. Yadoji, Structural and magnetic properties of NiZn ferrites prepared by microwave sintering, J. Magn. Magn. Mater. 279(2004)195–201. doi:10.1016/j. jmmm.2004.01.079.
  10. Verma, T.C. Goel, R.G. Mendiratta, Low temperature processing of Ni Zn ferrite by citrate precursor method and study of properties, Mater. Sci. Technol. 16(2000)712–715. doi:10.1179/026708300101508324.
  11. Z. Hai Tao, M. Rui Ting, Synthesis and characterization of rare-earth elements substituted Ni-Zn ferrites, Integr. Ferroelectr. 178(2017)79–87. doi: 10.1080/10584587.2017.1324721.
  12. Y.B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana, Structural, magnetic and optical characterization of Ni0.8Zn0.2Fe2O4nano particles prepared by co- precipitation method, Phys. B Condens. Matter. 502(2016)181–186. doi: 10.1016/j.physb.2016.09.006.
  13. R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique, J. Magn. Magn. Mater. 253(2002)56–64. doi: 10.1016/S0304- 8853(02)00413-4.
  14. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Magnetic properties of Cr- substituted Co-ferrite nanoparticles synthesized by citrate-gel auto combustion method, J. Nanostructure Chem. 3(2013)8–13. doi: 10.1186/2193-8865-3-63.
  15. M.P. Ghosh, S. Mukherjee, Ce3+-doped nano-crystalline cobalt–zinc spinel ferrite: Micro structural, magnetic, and optical characterizations, J. Mater. Sci. Mater. Electron. 31(2020)6207–6216. doi:10.1007/s10854-020-03174-4.
  16. S. Anjum, F. Sehar, M.S. Awan, R. Zia, Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite, Appl. Phys. A Mater. Sci. Process. 122(2016)1–9. doi:10.1007/s00339-016-9798-z.
  17. C. Venkataraju, G. Sathishkumar, K. Sivakumar. Effect of Cd on the structural, magnetic and electrical properties of nanostructured Mn–Zn ferrite. J. Magn. Magn. Mater 323 (2011) 13, 1817-1822. https://doi.org/10.1016/j.jmmm.2011.02.017
  18. M.R. Patil, M.K. Rendale, S.N. Mathad, R.B.Pujar. Electrical and magnetic properties of Cd+2 doped Ni-Zn ferrites. Inorganic and Nano-Metal Chemistry 54 (2016) 1145-1149 https://doi.org/10.1080/24701556.2017.1284097
  19. A Humaira, M Asghari Frequency dependent dielectric measurements of Cd2+ doped Mn-Zn nano ferrites prepared by sol gel and coprecipitation methods. J. Phys.: Conf. Ser. 439 (2013) 12014
  20. M. Kamran, M. Anis-ur-Rehman, Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications, J. Alloys Compd. 822(2020)153583. doi:10.1016/ j.jall com.2019.153583.
  21. L. George, C. Viji, H. Mathew, E.M. Mohammed, Structural, Dielectric, Magnetic and Optical Properties of Cerium Substituted Ni-Zn Mixed Ferrite, Mater. Sci. Res. India. 14(2017)133–139. doi: 10.13005/msri/140208.
  22. H.R. Sharma, K.M. Batoo, P. Sharma, Structural, electrical, and magnetic studies of Cu2+ substituted Mn Fe2O4nano ferrites synthesized via solution combustion technique, J Mater Sci: Mater Electron. 33(2022)7528–7542. https://doi.org/10.1007/s10854-022-07897-4.
  23. B.P. Jacob, A. Kumar, R.P. Pant, S. Singh, E.M. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles, Bull. Mater. Sci. 34(2011)1345–1350. doi: 10.1007/s12034-011-0326- 7.
  24. M.R. Patil, M.K. Rendale, S.N. Mathad, R.B. Pujar, FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites, Int. J. Self-Propagating High- Temperature Synth. 261(2017)33–39. doi:10.3103/S1061386217010083.
  25. S. Kumar, A.K. Jha, K. Prasad, Green synthesis and characterization of Ag1/2Al1/2TiO3 nano ceramics, Mater. Sci. Pol. 33 1(2015)59–72. doi: 10.1515/msp- 2015-0006.
  26. G. Umapathy, G. Senguttuvan, L.J. Berchmans, V. Sivakumar, P. Jegatheesan, Influence of cerium substitution on structural, magnetic and dielectric properties of nanocrystalline Ni–Zn ferrites synthesized by combustion method, J. Mater. Sci. Mater. Electron. 28(2017)17505–17515. doi:10.1007/s10854-017-7686-8.
  27. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals, J. Supercond. Nov. Magn. 25(2012)2443–2455. doi: 10.1007/s10948-012-1655-5.
  28. S. Li, Structure and magnetic properties of coprecipitated nickel-zinc ferrite- doped rare earth elements of Sc, Dy, and Gd, J. Mater. Sci. Mater. Electron. 32(2021)13511–13526. doi:10.1007/s10854-021-05928-0.
  29. R. Kesavamoorthi, C. Raja, Substitution Effects on Rare-Earth Ions-Doped Nickel-Zinc Ferrite Nanoparticles, J. Supercond. Nov. Magn. 30(2017)1207–1212. doi:10.1007/s10948-016-3904-5.
  30. H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, Structural, magnetic and optical properties of nano sized Ni0.4Cu0.2Zn0.4R0.05Fe1.95O4(R?=?Eu3+, Sm3+, Gd3+and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation, J. Magn. Magn. Mater. 460(2018)89–94. doi:10.1016/ j. jmmm.2018.03.062.
  31. X. Zhou, Y. Zhou, L. Zhou, J. Wei, J. Wu, D. Yao, Effect of Gd and La doping on the structure, optical and magnetic properties of Ni Zn Co ferrites. Ceram. Int. 45(2019)6236–6242. doi:10.1016/ j. ceramint.2018.12.102.
  32. Y. Slimani, Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nano spinel ferrites: Ultrasonic synthesis and physical properties, Ultrason. Sonochem. 59(2019)104757. doi: 10.1016/j.ultsonch.2019.104757.
  33. S. Singhal, S.K. Barthwal, K. Chandra, XRD, magnetic and Mössbauerspectral studies of nano size aluminum substituted cobalt ferrites (Co AlxFe2-xO4). J. Magn. Magn. Mater. 306(2006)233–240. doi:10.1016/j. jmmm.2006.03.023.
  34. I. Hsing, Hsiang, W. Jhao-Ling, Copper-rich phase segregation effects on the magnetic properties and DC- bias – superposition characteristic of Ni Cu Zn ferrites, 374(2015)367-371. https://doi.org/10.1016/j.jmmm.2014.08.077
  35. P. Gao, Structural investigations and magnetic properties of sol-gel Ni 0 .5Zn 0 .5 Fe 2O4 thin films for microwave heating Structural investigations and magnetic properties of sol- gel Ni 0.5Zn 0.5Fe 2O 4, J. Appl. Phys. 044317(2010)3–11. http://dx.doi.org/10.1063/1.3309767.
  36. E.J.W. Verwey, Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures, Nature. 144(1939)327328. https://doi.org/10.1038/144327b0.
  37. Bablu Chandra Das, F. Alam, A.K.M. Hossain Akther, The crystallographic, magnetic, and electrical properties of Gd3+-substituted Ni Cu Zn mixed ferrites, J Phys Chem Solids. 142(2020)109433. https://doi.org/10.1016/j.jpcs.2020.109433.
  38. M.A. Almessiere, Y. Slimani, H. Gungunes, A. Demir Korkmaz, S.V. Trukhanov, S. Guner, F. Alahmari, A.V. Trukhanov, A. Baykal, Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu- Zn ferrites, Mater. Sci. Eng. B. 270 (2021) 115202. https://doi.org/10.1016/j.mseb.2021.115202.
  39. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in Magnetic Behaviour of Cobalt Doped Magnesium Zinc Nano- Ferrites Via Co-Precipitation Route, J. Alloys Compd. 684(2016)569-581. https://doi.org/10.1016/j.jallcom.2016.05.200.
  40. M. Soka, M. Usakova, E. Usak, R. Dosoudil, J. Lokaj, Magnetic properties analysis of rare-earth substituted nickel zinc ferrites, IEEE Trans. Magn. 50(2013)2– 5. doi: 10.1109/TMAG.2013.2284053.
  41. Javed, F. Iqbal, P.O. Agboola, M.A. Khan, M.F. Warsi, I. Shakir, Structural, electrical and magnetic parameters evaluation of nano-crystalline rare earth Nd3+ - substituted nickel-zinc spinel ferrite particles, Ceram. Int. 45(2019)11125–11130. doi: 10.1016/j.ceramint.2019.02.176.
  42. M.D. Harun-Or-Rashid, M. Nazrul Islam, M. Arifuzzaman, A.K.M. Akther Hossain, Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni Cu Zn and Ni Cu Zn Sc ferrites, J Mater Sci: Mater Electron. 32(2021)2505-2523. https://doi.org/10.1007/s10854-020-05018-7.
  43. A. H. El Foulani, A. Aamouche, F. Mohseni, J. S. Amaral, D. M. Tobaldi, R. C. Pullar, Effect of surfactants on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5Fe2O4, J. Alloys Comp.774(2019)1250-1259. https://doi.org/10.1016/j.jallcom.2018.09.393.
  44. V.K. Chakradhary, A. Ansari, M. Jaleel Akhtar, Design synthesis and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications, J. Magn. Magn. Mater.469(2019)674-680. https://doi.org/10.1016/j.jmmm.2018.09.021.
  45. S.H. Chung, A. Hoffmann, S.D. Bader, Biological sensors based on Brownian relaxation of magnetic nanoparticles, Appl. Phys. Lett. 85 14(2004)2971-2973. https://doi.org/10.1063/1.1801687.
  46. M. N. Akhtar, M. Yousaf, Lu. Yuzheng, M. A. Khan, Ali Sarosh, Mina Arshad, Misbah Niamat, Muhammad Farhan, A. Ahmad, M. U. Khallidoon, Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni-Zn spinel nano ferrites for data and energy storage devices, Ceram. Int. 47(2021)11878-11886. https://doi.org/10.1016/j.ceramint.2021.01.028.
  47. Arminder Kaur, Gagan Kumar Bhargava, Review paper on nickel-zinc nano ferrite, Mater. Today: Proc. 37(2021)3082-3086. https://doi.org/10.1016/j.matpr.2020.09.016.
  48. M.A. Farid, G. Li, J. Lin, Structural, Magnetic and Dielectric Properties of Perovskite (Tb0.874Mn0.106) Mn1-xNixO3-δ, Electron. Mater. Lett. 17(2021)229–239. https://doi.org/10.1007/s13391-021-00279-8.
  49. N. Maramu, G. Sriramulu, T. Ramesh, D. Ravinder, S. Katlakunta, T.A. Babu, N.V.K. Prasad, Crystal chemistry, Rietveld analysis, magnetic and microwave properties of Cu-doped strontium hexa ferrites, J Mater Sci: Mater Electron. 32(2021)10376-10387. DOI:10.1007/s10854-021-05694-z.
  50. G. Naveena, D. Ravinder, T.A. Babu, B. Ravinder Reddy, Sumalatha Edapalli, K. Vani, Rajender Thota, N.V.K. Prasad, Low Temperature magnetic properties of erbium doped bismuth nano-ferrites, J Mater Sci: Mater Electron. 32(2021)18224-18230. https://doi.org/10.1007/s10854-021-06365-9.
  51. A. Mahesh Kumar, K. Srinivasa Rao, M. Chaitanya Varma, K.H. Rao, Investigations of surface spin canting in Ni-Zn nanoferrite and its development as magnetic core for microwave applications, J. Magn. Magn. Mater 471(2019)262-266. https://doi.org/10.1016/j.jmmm.2018.09.060.
  52. Mahnaz Amiri, Masoud Salavati-Niasari, Ahmad Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv. Colloid Interface Sci. 265(2019)2944. doi: 10.1016/j.cis.2019.01.003.
  53. Z. Zhao, Z. Li, Structures and magnetic and electronic properties of the O2-adsorbed Fe2N clusters, Struct Chem. 32(2021)127–133. https://doi.org/10.1007/s11224-020- 01626-5.

Downloads

Published

2019-02-22

Issue

Section

Research Articles

How to Cite

[1]
M. Venkata Narayana, " Chemical Synthesis, Structural and Superparamagnetic behavior of Zinc Doped Cadmium Nano Ferrite Applications, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 1, pp.616-624, January-February-2019.