Design and Fabrication of Wind-Powered Laptop and Mobile Charger
DOI:
https://doi.org/10.32628/IJSRSET2310123Keywords:
VAWTs, Battery, Solar Panel, Plug Port.Abstract
Urban areas lack the average wind speed needed to operate horizontal axis wind turbines (HAWT), so vertical axis wind turbines (VAWT) are in demand. Savonius (Drag) and Darrieus (Lift) types of vertical axis wind turbines are both used. The comparison of the coefficients of performance (COP) of Savonius and Darrieus types of vertical axis wind turbines is the main focus of the current study. ANSYS Fluent-Computational Fluid Dynamics (CFD) software is used to numerically analyse the aforementioned VAWTs. Both turbines' blade designs are selected to provide the best output possible given the available input. The wind turbines' output parameters are obtained separately and compared for the same input parameters. This comparison provides a basis for choosing the type of VAWT to be implemented according to the function.
References
- Jha, A.R. (2010). Wind turbine technology. Boca Raton, FL: CRC Press.[page needed]
- Raciti Castelli, Marco; Englaro, Alessandro; Benini, Ernesto (2011). "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD". Energy. 36 (8): 4919–34. doi:10.1016/j.energy.2011.05.036.
- Analysis of Different Blade Architectures on small VAWT Performance
- Islam, M; Ting, D; Fartaj, A (2008). "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines". Renewable and Sustainable Energy Reviews. 12 (4): 1087–109. doi:10.1016/j.rser.2006.10.023.
- https://fenix.tecnico.ulisboa.pt/downloadFile/395143097660/Extended%20abstract.pdf[full citation needed]
- El Kasmi, Amina; Masson, Christian (2008). "An extended k–ε model for turbulent flow through horizontal-axis wind turbines". Journal of Wind Engineering and Industrial Aerodynamics. 96: 103–22. doi:10.1016/j.jweia.2007.03.007.
- Eriksson, S; Bernhoff, H; Leijon, M (2008). "Evaluation of different turbine concepts for wind power". Renewable and Sustainable Energy Reviews. 12 (5): 1419–34. doi:10.1016/j.rser.2006.05.017.
- AIP Conference Proceedings 1931, 030040 (2018); [1]
- Peace, Steven (June 1, 2004). "Another Approach to Wind". Mechanical Engineering. Archived from the original on November 15, 2017.
- Svitil, Kathy (July 13, 2011). "Wind-turbine placement produces tenfold power increase, researchers say". PhysOrg.
- Buchner, A-J.; Soria, J.; Honnery, D.; Smits, A.J. (2018). "Dynamic stall in vertical axis wind turbines: Scaling and topological considerations". Journal of Fluid Mechanics. 841:7466. Bibcode:2018JFM...841..746B. doi:10.1017/jfm.2018.112.
- Buchner, A-J.; Lohry, M.W.; Martinelli, L.; Soria, J.; Smits, A.J. (2015). "Dynamic stall in vertical axis wind turbines: Comparing experiments and computations". Journal of Wind Engineering and Industrial Aerodynamics. 146: 163–71. doi:10.1016/j.jweia.2015.09.001.
- Simão Ferreira, Carlos; Van Kuik, Gijs; Van Bussel, Gerard; Scarano, Fulvio (2008). "Visualization by PIV of dynamic stall on a vertical axis wind turbine". Experiments in Fluids. 46: 97–108. Bibcode:2009ExFl...46...97S. doi:10.1007/s00348-008-0543-z.
- Chiras, Dan (2010). Wind Power Basics: A Green Energy Guide. New Society. ISBN 978-0-86571-617-9.[page needed]
- Ashwill, Thomas D.; Sutherland, Herbert J.; Berg, Dale E. (2012). "A retrospective of VAWT technology". doi:10.2172/1035336.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.