Application of Raw and CTAB Activated Bentonite in the Treatment of Ammonia-Phenolic Wastewater

Authors

  • Abdel Dozic  Department of Environmental Engineering, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Halid Junuzovic  Department of Analytical Chemistry, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Melisa Ahmetovic  Department of Physical chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Indira Sestan  Department of Physical chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Sabina Begic  Department of Chemical technology, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Mirnesa Zohorovic  Department of Environmental Engineering, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Hana Alihodzic  Department of Environmental Engineering, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina

DOI:

https://doi.org/10.32628/IJSRSET2310145

Keywords:

Raw Bentonite, CTAB Activated Bentonite, Ammonia Nitrogen, Phenols, Cyanides

Abstract

Adsorption with bentonite offers an efficient, cost-effective and environmentally friendly method for the treatment of ammonia-phenolic wastewater. Therefore, raw bentonite and organoactivated bentonite with hexadecyl trimethyl ammonium bromide (CTAB) were used as adsorbents for the removal of total ammonia, total phenols and total cyanides from untreated ammonia-phenolic wastewater. Better percent removal of total ammonia (34.64%), total phenols (42.50%) from ammonia-phenolic wastewater was achieved with CTAB activated bentonite compared to raw bentonite. Raw bentonite is recommended for the removal of cyanide ions from ammonia-phenolic wastewater over CTAB activated bentonite. Although both adsorbents give a similar percentage of removal, raw bentonite is considered a cheaper option compared to activated due to additional cost and time, so it would be the choice for removing these ions.

References

  1. G. Crini and E. Lichtfouse. 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry. Vol. 17,145–155. DOI:  https://doi.org/10.1007/s10311-018-0785-9
  2. A. Sonune and R. Ghate. 2004. Developments in wastewater treatment methods. Desalination. Vol.167, 55-63. DOI: https://doi.org/10.1016/j.desal.2004.06.113
  3. Z. Aghalari, H. U. Dahms, M. Sillanpää, J. E. S. Hernandez, R. P. Saldívar. 2020. Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. Global Health. DOI: doi: 10.1186/s12992-020-0546-y
  4. S. Bonetta, C. Pignata, E. Gasparro, L. Richiardi, S. Bonetta, E. Carraro. 2022. Impact of wastewater treatment plants on microbiological contamination for evaluating the risks of wastewater reuse. Environmental Sciences Europe. Vol. 34. DOI: https://doi.org/10.1186/s12302-022-00597-0
  5. K. K. Kesari, R. Soni, Q. M. S. Jamal, P. Tripathi, J. A. Lal, N. K. Jha, M. H. Siddiqui, P. Kumar, V. Tripathi, J. Ruokolainen. 2021. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water, Air, & Soil Pollution. Vol. 232,  DOI: https://doi.org/10.1007/s11270-021-05154-8
  6. F. Fu and Qi W. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. Vol. 92, Issue 3, 407-418.  DOI:https://doi.org/10.1016/j.jenvman.2010.11.011
  7. I. Ali and V. K. Gupta. 2007. Advances in water treatment by adsorption technology. Nature Protocols. Vol. 1, 2661–2667. DOI: https://doi.org/10.1038/nprot.2006.370
  8. N. A. A. Qasem, R. H. Mohammed, D. U. Lawal. 2021. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, Vol. 4.  DOI: https://doi.org/10.1038/s41545-021-00127-0
  9. A. Dąbrowski. 2001. Adsorption — from theory to practice. Advances in Colloid and Interface Science. Vol. 93, Issues 1–3, 8, 135-224.  DOI: https://doi.org/10.1016/S0001-8686(00)00082-8
  10. N. Ayawei, A. Newton Ebelegi, D. Wankasi. 2017. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry. Vol. 2017. DOI: https://doi.org/10.1155/2017/3039817
  11. J. Walter, Jr. Weber, J. C. Morris. 1963. Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division. Vol. 89, Issue 2.  DOI: https://doi.org/10.1061/JSEDAI.0000430
  12. Piotr B. and M. Z. Świątek. 2018. Technologies of coke wastewater treatment in the frame of legislation in force. Environmental Protection and Natural Resources. Vol. 29, 11-15. DOI: https://doi.org/10.2478/oszn-2018-0003
  13. P. Burmistrz, A. Rozwadowski, M. Burmistrz, A. Karcz. 2014. Coke dust enhances coke plant wastewater treatment. Chemosphere. Vol. 117,278-284. DOI: 10.1016/j.chemosphere.2014.07.025.
  14. M. Smol, D. Włóka, M. W. Makuła. 2018. Influence of Integrated Membrane Treatment on the Phytotoxicity of Wastewater from the Coke Industry. Water, Air, & Soil Pollution. Vol. 229.
  15. X. Luo, Q. Yan, C. Wang, C. Luo, N. Zhou,  C. Jian. 2015. Treatment of Ammonia Nitrogen Wastewater in Low Concentration by Two-Stage Ozonization. Int J Environ Res Public Health. Vol. 12, Issue 9, 11975–11987.
  16. Y. Dong, H. Yuan, R. Zhang, N. Zhu. 2019. Removal of Ammonia Nitrogen from Wastewater: A Review. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan. Vol. 62 Issue 6, 1767-1778.  DOI: doi: 10.13031/trans.13671
  17. W.T. Mook, M.H. Chakrabarti, M.K. Aroua, G.M.A. Khan, B.S. Ali, M.S. Islam, M.A. Abu Hassan. 2012. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination. Vol. 285, 1-13. DOI: https://doi.org/10.1016/j.desal.2011.09.029
  18. A. Ivanchenko,  K. Khavikova, A. Trukilo. 2020. Mathematical modeling of the processes of wastewater purification from phenols and rhodanides using glauconite. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, Vol. 4. 111-116. DOI: 10.33271/nvngu/2020-4/111
  19. G. Alexandersson. 2007. Treatment of waste water from coke production feasibility study of Huaxi Jiohua ltd, wuhai, inner mongolia, prc. Master thesis.
  20. P. Agarwal, R. Gupta, N. Agarwal. 2016. A Review on Enzymatic Treatment of Phenols in Wastewater. Journal of Biotechnology & Biomaterials. Vol. 6, Issue 4. 1-6. DOI: 10.4172/2155-952X.1000249
  21. Y. Gucbilmez. 2021. Physiochemical Properties and Removal Methods of Phenolic Compounds from Waste Waters. Persistent Organic Pollutants (POPs).  DOI: 10.5772/intechopen.101545
  22. H. Jiang, Y. Fang, Y. Fu, Q. X. Guo. 2003. Studies on the extraction of phenol in wastewater. Journal of Hazardous Materials. Vol. 101, Issue 2, 179-190. DOI: https://doi.org/10.1016/S0304-3894(03)00176-6
  23. M. Ahmaruzzaman and D.K. Sharma. 2005. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science. Vol. 287, Issue 1,  14-24.  DOI: https://doi.org/10.1016/j.jcis.2005.01.075
  24. G. Qin, K. Zou, F. He, J. Shao, B. Zuo, J. Liu, R. Liu, B. Yang, G. Zhao. 2023. Simultaneous determination of volatile phenol, cyanide, anionic surfactant, and ammonia nitrogen in drinking water by a continuous flow analyser. Scientific Reports. Vol. 13. DOI: https://doi.org/10.1038/s41598-023-28776-w
  25. T. Christison, B. D. Borbra, J. Rohrer. 2010. Determination of Total Cyanide in Municipal Wastewater and Drinking Water Using Ion-Exclusion Chromatography with Pulsed Amperometric Detection (ICE-PAD). Thermo Fisher Scientific, Sunnyvale, CA.
  26. C.A. Young and T.S. Jordan. 1995. CYANIDE REMEDIATION: CURRENT AND PAST TECHNOLOGIES. Proceedings of the 10th Annual Conference on Hazardous Waste Research. 104-129.
  27. R. Roshan Dash, C. Balomajumder, A. Kumar. 2009. Removal of cyanide from water and wastewater using granular activated carbon. Chemical Engineering Journal. Vol. 146, Issue 3, 408-413.  DOI: https://doi.org/10.1016/j.cej.2008.06.021
  28. D. Naveen, C.B. Majumder, P. Mondal  D. Shubha. 2011. Biological Treatment of Cyanide Containing Wastewater. esearch Journal of Chemical Sciences. Vol. 7, Issue 1. 15-21.
  29. M. Moosavi. 2017. Bentonite Clay as a Natural Remedy: A Brief Review. Iran J Public Health. Vol. 46, Issue 9. 1176–1183.
  30. M. Toor, B. Jin, S. Dai, V. Vimonses. 2015. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry Vol. 21, 653-661.
  31. R. Marouf, N. Dali, N. Boudouara, F. Ouadjenia, F. Zahaf. 2020. Study of Adsorption Properties of Bentonite Clay. Montmorillonite Clay. DOI: 10.5772/intechopen.96524
  32. S. Arita, M. Naswir, I. Astriana, Nelson. 2018. The Development of Nanotechnology Bentonite as Adsorbent of Copper Metal (Cu). American Journal of Engineering and Applied Sciences. DOI: 10.3844/ajeassp.2018.845.851
  33. Web site:  http://ba.fengchengroup.org/chemicals/featured-chemicals/hexadecyl-trimethyl-ammonium-bromide-ctab-98.html
  34. M. Yuliana, R. J. Sutrisno, S. Hermanto, S. Ismadji, C. J. Wijaya, S. P. Santoso, F. E. Soetaredjo, Y. H. Ju. 2020. Hydrophobic Cetyltrimethylammonium Bromide-Pillared Bentonite as an Effective Palm Oil Bleaching Agent. ACS Omega. Vol. 5, Issue 44. 28844–28855. DOI: 10.1021/acsomega.0c04238
  35. Ворончак, Т. О., Никулишин, І. Є., Піх, З. Г., Рипка, Г. М., & Гнатів, З. Я. (2014). Improvement of catalytic activity of activated bentonite clay by treatment with cetyltrimethylammonium bromide. Eastern-European Journal of Enterprise Technologies, Vol. 2(6), Issue 68, 38–42. DOI: https://doi.org/10.15587/1729-4061.2014.21855
  36. H. Wang, K. Ruan, S. Harasaki, H. Komine. 2021. Effects of specimen thickness on apparent swelling pressure evolution of compacted bentonite. Soils and Foundations. Vol. 62. DOI: https://doi.org/10.1016/j.sandf.2021.1010990
  37. A. Đozić, H.  Alihodžić, H. Junuzović, I. Šestan, M. Zohorović, M. Ahmetović 2022. Removal  As(V) and Hg(II)  ions from simulated wastewater using natural and modified Ca - bentonite. International Journal of Environment, Agriculture and Biotechnology. 7 (4).  178-185.
  38. A. Đozić, H.  Alihodžić, H. Junuzović, I. Šestan, M. Zohorović, M. Ahmetović 2022. Efficiency of removal Cr(III), Ni(II), Pb(II) ions from simulated wastewater using natural and modified Ca - bentonite. International Journal of Environment, Agriculture and Biotechnology. 7 (4). 54-62.
  39. S. Eturki, F. Ayari, N. Jedidi, H. B. Dhia. 2012. Use of clay mineral to reduce ammonium from wastewater effect of various parameters. Электронная обработка материалов, Vol. 48, Issue 3, 102–110.
  40. R. A. D. Tilaki. 2012. Removal of ammonium ions from water by raw and alkali activated bentonite. ICAMS 2012 – 4th International Conference on Advanced Materials and Systems.
  41. C. Y. Cao, L. K. Meng, Y. H. Zhao. 2011. Adsorption of phenol from wastewater by organo-bentonite. Desalination and Water Treatment. Vol. 52, Issue 19-21. 3504-3509.  DOI: https://doi.org/10.1080/19443994.2013.803649
  42. S. Al-Asheh, F. Banat, L. Abu-Aitah. 2003. Adsorption of phenol using different types of activated bentonites. Separation and Purification Technology. Vol. 33, Issue 1, 1-10. DOI: https://doi.org/10.1016/S1383-5866(02)00180-6
  43. J. Wang, H. Ma, J. Yu, S. Wang, Wenyan. He,  X. Huang. 2013. Studies on phenol removal from wastewater with CTAB-modified bentonite supported KMnO4. Journal of Water Reuse and Desalination. Vol. 3, Issue 3. DOI:10.2166/wrd.2013.098
  44. M. R. RezaeiKahkha, G. Ebrahmzadeh, N. Ranjbar. 2017. Removal of Cyanide, Phosphate, and Nitrate from Wastewater Using Granulated Activated Bentonite. Advances in Bioresearch, Vol. 8, Issue 1. 138-144. DOI: 10.15515/abr.0976-4585.8.1.138144

Downloads

Published

2023-02-28

Issue

Section

Research Articles

How to Cite

[1]
Abdel Dozic, Halid Junuzovic, Melisa Ahmetovic, Indira Sestan, Sabina Begic, Mirnesa Zohorovic, Hana Alihodzic "Application of Raw and CTAB Activated Bentonite in the Treatment of Ammonia-Phenolic Wastewater" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 10, Issue 1, pp.292-300, January-February-2023. Available at doi : https://doi.org/10.32628/IJSRSET2310145