Application of Raw and CTAB Activated Bentonite in the Treatment of Ammonia-Phenolic Wastewater
DOI:
https://doi.org/10.32628/IJSRSET2310145Keywords:
Raw Bentonite, CTAB Activated Bentonite, Ammonia Nitrogen, Phenols, CyanidesAbstract
Adsorption with bentonite offers an efficient, cost-effective and environmentally friendly method for the treatment of ammonia-phenolic wastewater. Therefore, raw bentonite and organoactivated bentonite with hexadecyl trimethyl ammonium bromide (CTAB) were used as adsorbents for the removal of total ammonia, total phenols and total cyanides from untreated ammonia-phenolic wastewater. Better percent removal of total ammonia (34.64%), total phenols (42.50%) from ammonia-phenolic wastewater was achieved with CTAB activated bentonite compared to raw bentonite. Raw bentonite is recommended for the removal of cyanide ions from ammonia-phenolic wastewater over CTAB activated bentonite. Although both adsorbents give a similar percentage of removal, raw bentonite is considered a cheaper option compared to activated due to additional cost and time, so it would be the choice for removing these ions.
References
- G. Crini and E. Lichtfouse. 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry. Vol. 17,145–155. DOI: https://doi.org/10.1007/s10311-018-0785-9
- A. Sonune and R. Ghate. 2004. Developments in wastewater treatment methods. Desalination. Vol.167, 55-63. DOI: https://doi.org/10.1016/j.desal.2004.06.113
- Z. Aghalari, H. U. Dahms, M. Sillanpää, J. E. S. Hernandez, R. P. Saldívar. 2020. Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. Global Health. DOI: doi: 10.1186/s12992-020-0546-y
- S. Bonetta, C. Pignata, E. Gasparro, L. Richiardi, S. Bonetta, E. Carraro. 2022. Impact of wastewater treatment plants on microbiological contamination for evaluating the risks of wastewater reuse. Environmental Sciences Europe. Vol. 34. DOI: https://doi.org/10.1186/s12302-022-00597-0
- K. K. Kesari, R. Soni, Q. M. S. Jamal, P. Tripathi, J. A. Lal, N. K. Jha, M. H. Siddiqui, P. Kumar, V. Tripathi, J. Ruokolainen. 2021. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water, Air, & Soil Pollution. Vol. 232, DOI: https://doi.org/10.1007/s11270-021-05154-8
- F. Fu and Qi W. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. Vol. 92, Issue 3, 407-418. DOI:https://doi.org/10.1016/j.jenvman.2010.11.011
- I. Ali and V. K. Gupta. 2007. Advances in water treatment by adsorption technology. Nature Protocols. Vol. 1, 2661–2667. DOI: https://doi.org/10.1038/nprot.2006.370
- N. A. A. Qasem, R. H. Mohammed, D. U. Lawal. 2021. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, Vol. 4. DOI: https://doi.org/10.1038/s41545-021-00127-0
- A. Dąbrowski. 2001. Adsorption — from theory to practice. Advances in Colloid and Interface Science. Vol. 93, Issues 1–3, 8, 135-224. DOI: https://doi.org/10.1016/S0001-8686(00)00082-8
- N. Ayawei, A. Newton Ebelegi, D. Wankasi. 2017. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry. Vol. 2017. DOI: https://doi.org/10.1155/2017/3039817
- J. Walter, Jr. Weber, J. C. Morris. 1963. Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division. Vol. 89, Issue 2. DOI: https://doi.org/10.1061/JSEDAI.0000430
- Piotr B. and M. Z. Świątek. 2018. Technologies of coke wastewater treatment in the frame of legislation in force. Environmental Protection and Natural Resources. Vol. 29, 11-15. DOI: https://doi.org/10.2478/oszn-2018-0003
- P. Burmistrz, A. Rozwadowski, M. Burmistrz, A. Karcz. 2014. Coke dust enhances coke plant wastewater treatment. Chemosphere. Vol. 117,278-284. DOI: 10.1016/j.chemosphere.2014.07.025.
- M. Smol, D. Włóka, M. W. Makuła. 2018. Influence of Integrated Membrane Treatment on the Phytotoxicity of Wastewater from the Coke Industry. Water, Air, & Soil Pollution. Vol. 229.
- X. Luo, Q. Yan, C. Wang, C. Luo, N. Zhou, C. Jian. 2015. Treatment of Ammonia Nitrogen Wastewater in Low Concentration by Two-Stage Ozonization. Int J Environ Res Public Health. Vol. 12, Issue 9, 11975–11987.
- Y. Dong, H. Yuan, R. Zhang, N. Zhu. 2019. Removal of Ammonia Nitrogen from Wastewater: A Review. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan. Vol. 62 Issue 6, 1767-1778. DOI: doi: 10.13031/trans.13671
- W.T. Mook, M.H. Chakrabarti, M.K. Aroua, G.M.A. Khan, B.S. Ali, M.S. Islam, M.A. Abu Hassan. 2012. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination. Vol. 285, 1-13. DOI: https://doi.org/10.1016/j.desal.2011.09.029
- A. Ivanchenko, K. Khavikova, A. Trukilo. 2020. Mathematical modeling of the processes of wastewater purification from phenols and rhodanides using glauconite. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, Vol. 4. 111-116. DOI: 10.33271/nvngu/2020-4/111
- G. Alexandersson. 2007. Treatment of waste water from coke production feasibility study of Huaxi Jiohua ltd, wuhai, inner mongolia, prc. Master thesis.
- P. Agarwal, R. Gupta, N. Agarwal. 2016. A Review on Enzymatic Treatment of Phenols in Wastewater. Journal of Biotechnology & Biomaterials. Vol. 6, Issue 4. 1-6. DOI: 10.4172/2155-952X.1000249
- Y. Gucbilmez. 2021. Physiochemical Properties and Removal Methods of Phenolic Compounds from Waste Waters. Persistent Organic Pollutants (POPs). DOI: 10.5772/intechopen.101545
- H. Jiang, Y. Fang, Y. Fu, Q. X. Guo. 2003. Studies on the extraction of phenol in wastewater. Journal of Hazardous Materials. Vol. 101, Issue 2, 179-190. DOI: https://doi.org/10.1016/S0304-3894(03)00176-6
- M. Ahmaruzzaman and D.K. Sharma. 2005. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science. Vol. 287, Issue 1, 14-24. DOI: https://doi.org/10.1016/j.jcis.2005.01.075
- G. Qin, K. Zou, F. He, J. Shao, B. Zuo, J. Liu, R. Liu, B. Yang, G. Zhao. 2023. Simultaneous determination of volatile phenol, cyanide, anionic surfactant, and ammonia nitrogen in drinking water by a continuous flow analyser. Scientific Reports. Vol. 13. DOI: https://doi.org/10.1038/s41598-023-28776-w
- T. Christison, B. D. Borbra, J. Rohrer. 2010. Determination of Total Cyanide in Municipal Wastewater and Drinking Water Using Ion-Exclusion Chromatography with Pulsed Amperometric Detection (ICE-PAD). Thermo Fisher Scientific, Sunnyvale, CA.
- C.A. Young and T.S. Jordan. 1995. CYANIDE REMEDIATION: CURRENT AND PAST TECHNOLOGIES. Proceedings of the 10th Annual Conference on Hazardous Waste Research. 104-129.
- R. Roshan Dash, C. Balomajumder, A. Kumar. 2009. Removal of cyanide from water and wastewater using granular activated carbon. Chemical Engineering Journal. Vol. 146, Issue 3, 408-413. DOI: https://doi.org/10.1016/j.cej.2008.06.021
- D. Naveen, C.B. Majumder, P. Mondal D. Shubha. 2011. Biological Treatment of Cyanide Containing Wastewater. esearch Journal of Chemical Sciences. Vol. 7, Issue 1. 15-21.
- M. Moosavi. 2017. Bentonite Clay as a Natural Remedy: A Brief Review. Iran J Public Health. Vol. 46, Issue 9. 1176–1183.
- M. Toor, B. Jin, S. Dai, V. Vimonses. 2015. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry Vol. 21, 653-661.
- R. Marouf, N. Dali, N. Boudouara, F. Ouadjenia, F. Zahaf. 2020. Study of Adsorption Properties of Bentonite Clay. Montmorillonite Clay. DOI: 10.5772/intechopen.96524
- S. Arita, M. Naswir, I. Astriana, Nelson. 2018. The Development of Nanotechnology Bentonite as Adsorbent of Copper Metal (Cu). American Journal of Engineering and Applied Sciences. DOI: 10.3844/ajeassp.2018.845.851
- Web site: http://ba.fengchengroup.org/chemicals/featured-chemicals/hexadecyl-trimethyl-ammonium-bromide-ctab-98.html
- M. Yuliana, R. J. Sutrisno, S. Hermanto, S. Ismadji, C. J. Wijaya, S. P. Santoso, F. E. Soetaredjo, Y. H. Ju. 2020. Hydrophobic Cetyltrimethylammonium Bromide-Pillared Bentonite as an Effective Palm Oil Bleaching Agent. ACS Omega. Vol. 5, Issue 44. 28844–28855. DOI: 10.1021/acsomega.0c04238
- Ворончак, Т. О., Никулишин, І. Є., Піх, З. Г., Рипка, Г. М., & Гнатів, З. Я. (2014). Improvement of catalytic activity of activated bentonite clay by treatment with cetyltrimethylammonium bromide. Eastern-European Journal of Enterprise Technologies, Vol. 2(6), Issue 68, 38–42. DOI: https://doi.org/10.15587/1729-4061.2014.21855
- H. Wang, K. Ruan, S. Harasaki, H. Komine. 2021. Effects of specimen thickness on apparent swelling pressure evolution of compacted bentonite. Soils and Foundations. Vol. 62. DOI: https://doi.org/10.1016/j.sandf.2021.1010990
- A. Đozić, H. Alihodžić, H. Junuzović, I. Šestan, M. Zohorović, M. Ahmetović 2022. Removal As(V) and Hg(II) ions from simulated wastewater using natural and modified Ca - bentonite. International Journal of Environment, Agriculture and Biotechnology. 7 (4). 178-185.
- A. Đozić, H. Alihodžić, H. Junuzović, I. Šestan, M. Zohorović, M. Ahmetović 2022. Efficiency of removal Cr(III), Ni(II), Pb(II) ions from simulated wastewater using natural and modified Ca - bentonite. International Journal of Environment, Agriculture and Biotechnology. 7 (4). 54-62.
- S. Eturki, F. Ayari, N. Jedidi, H. B. Dhia. 2012. Use of clay mineral to reduce ammonium from wastewater effect of various parameters. Электронная обработка материалов, Vol. 48, Issue 3, 102–110.
- R. A. D. Tilaki. 2012. Removal of ammonium ions from water by raw and alkali activated bentonite. ICAMS 2012 – 4th International Conference on Advanced Materials and Systems.
- C. Y. Cao, L. K. Meng, Y. H. Zhao. 2011. Adsorption of phenol from wastewater by organo-bentonite. Desalination and Water Treatment. Vol. 52, Issue 19-21. 3504-3509. DOI: https://doi.org/10.1080/19443994.2013.803649
- S. Al-Asheh, F. Banat, L. Abu-Aitah. 2003. Adsorption of phenol using different types of activated bentonites. Separation and Purification Technology. Vol. 33, Issue 1, 1-10. DOI: https://doi.org/10.1016/S1383-5866(02)00180-6
- J. Wang, H. Ma, J. Yu, S. Wang, Wenyan. He, X. Huang. 2013. Studies on phenol removal from wastewater with CTAB-modified bentonite supported KMnO4. Journal of Water Reuse and Desalination. Vol. 3, Issue 3. DOI:10.2166/wrd.2013.098
- M. R. RezaeiKahkha, G. Ebrahmzadeh, N. Ranjbar. 2017. Removal of Cyanide, Phosphate, and Nitrate from Wastewater Using Granulated Activated Bentonite. Advances in Bioresearch, Vol. 8, Issue 1. 138-144. DOI: 10.15515/abr.0976-4585.8.1.138144
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.