Characterization of AA6063 using activated TIG welding with TiO2 flux

Authors

  • Rajiv Kumar  Research Scholar, UIET, Panjab university, Chandigarh, India
  • Harmesh Kumar Kansal  Professor, UIET, Panjab University, Chandigarh, India
  • S. C. Vettivel  CCET (Degree Wing), Chandigarh, India

Keywords:

Aluminum Alloy, Activated TIG welding, Texture, Microstructure

Abstract

This paper is focused on the ATIG characterization of Aluminium Alloy (AA) 6063 T6 using TiO2 with the filler of AA 5356. The characterization of the Base Material (BM), Fusion Zone (FZ), Heat Effected Zone (HAZ) and partially melted zone are done using the Optical Microscope, Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectrum (EDS) and electron back scatter diffraction.

References

  1. Davis JR, Aluminum and aluminum alloys, ASM Speciality Handbook, ASM International, Materials Park,  USA 1994 :1-11
  2. S.T. Amancio-Filho, S. Sheikhi, J.F. dos Santos, C. Bolfarini, Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4, J. Mater. Process. Technol. 206 (2008) 132–142. doi:10.1016/j.jmatprotec.2007.12.008.
  3. P. Mukhopadhyay, Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys, ISRN Metall. 2012 (2012) 1–15. doi:10.5402/2012/165082.
  4. B. Choudhury, M. Chandrasekaran, Investigation on welding characteristics of aerospace materials - A review, Mater. Today Proc. 4 (2017) 7519–7526. doi:10.1016/j.matpr.2017.07.083.
  5. R.R. Ambriz, V. Mayagoitia, I.P.N. Ciitec-ipn, Welding of Aluminum Alloys, Welding, Brazing Solder. (2018) 722–739. doi:10.31399/asm.hb.v06.a0001436.
  6. P.J. Modenesi, The chemistry of TIG weld bead formation, Weld. Int. 29 (2015) 771–782. doi:10.1080/09507116.2014.932990.
  7. A.K. Singh, V. Dey, R.N. Rai, Techniques to improveweld penetration in TIG welding (A review), Mater. Today Proc. 4 (2017) 1252–1259. doi:10.1016/j.matpr.2017.01.145.
  8. R.S. Vidyarthy, D.K. Dwivedi, Activating flux tungsten inert gas welding for enhanced weld penetration, J. Manuf. Process. 22 (2016) 211–228. doi:10.1016/j.jmapro.2016.03.012.
  9. R.S. Vidyarthy, D.K. Dwivedi, Microstructural and mechanical properties assessment of the P91 A-TIG weld joints, J. Manuf. Process. 31 (2018) 523–535. doi:10.1016/j.jmapro.2017.12.012.
  10. K.D. Ramkumar, V. Varma, M. Prasad, N.D. Rajan, N.S. Shanmugam, Effect of activated flux on penetration depth, microstructure and mechanical properties of Ti-6Al-4V TIG welds, J. Mater. Process. Technol. 261 (2018) 233–241. doi:10.1016/j.jmatprotec.2018.06.024.
  11. H. Kumar, N.K. Singh, Performance of activated TIG welding in 304 austenitic stainless steel welds, Mater. Today Proc. 4 (2017) 9914–9918. doi:10.1016/j.matpr.2017.06.293.
  12. R.S. Vidyarthy, A. Kulkarni, D.K. Dwivedi, Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint, Mater. Sci. Eng. A. 695 (2017) 249–257. doi:10.1016/j.msea.2017.04.038.
  13. B. Wu, B. Wang, X. Zhao, H. Peng, Effect of active fluxes on thermophysical properties of 309L stainless-steel welds, J. Mater. Process. Technol. 255 (2018) 212–218. doi:10.1016/j.jmatprotec.2017.12.018.
  14. Y. Huang, D. Fan, Q. Fan, Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy, Front. Mech. Eng. China. 2 (2007) 442–447. doi:10.1007/s11465-007-0076-9.
  15. Q. Li, A. Wu, Y. Li, G. Wang, D. Yan, J. Liu, Influence of temperature cycles on the microstructures and mechanical properties of the partially melted zone in the fusion welded joints of 2219 aluminum alloy, Mater. Sci. Eng. A. 623 (2015) 38–48. doi:10.1016/j.msea.2014.11.047.
  16. A.K.C. Mills, B.J. Keene, R.F. Brooks, A. Shirali, I. Phenomena, P. Apr, Marangoni Effects in Welding Source : Philosophical Transactions : Mathematical , Physical and Engineering Sciences , Vol . Marangoni effects in welding, 356 (2018) 911–925.
  17. E.A. Skvortsov, Role of electronegative elements in contraction of the arc discharge, Weld. Int. 12 (1998) 471–475. doi:10.1080/09507119809448517.
  18. V. Arunkumar, M. Vasudevan, V. Maduraimuthu, V. Muthupandi, Effect of activated flux on the microstructure and mechanical properties of 9Cr-1Mo steel weld joint, Mater. Manuf. Process. 27 (2012) 1171–1177. doi:10.1080/10426914.2011.610212.
  19. K.H. Tseng, Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels, Powder Technol. 233 (2013) 72–79. doi:10.1016/j.powtec.2012.08.038.
  20. E.R. Imam Fauzi, M.S. Che Jamil, Z. Samad, P. Muangjunburee, Microstructure analysis and mechanical characteristics of tungsten inert gas and metal inert gas welded AA6082-T6 tubular joint: A comparative study, Trans. Nonferrous Met. Soc. China (English Ed. 27 (2017) 17–24. doi:10.1016/S1003-6326(17)60003-7.
  21. R.S. Coelho, A. Kostka, J.F. dos Santos, A. Kaysser-Pyzalla, Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure, Mater. Sci. Eng. A. 556 (2012) 175–183. doi:10.1016/j.msea.2012.06.076.
  22. A.S. Zoeram, S.H.M. Anijdan, H.R. Jafarian, T. Bhattacharjee, Welding parameters analysis and microstructural evolution of dissimilar joints in Al/Bronze processed by friction stir welding and their effect on engineering tensile behavior, Mater. Sci. Eng. A. 687 (2017) 288–297. doi:10.1016/j.msea.2017.01.071.
  23. K.H. Dhandha, V.J. Badheka, Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process, J. Manuf. Process. 17 (2015) 48–57. doi:10.1016/j.jmapro.2014.10.004.
  24. H.T. Fujii, H. Endo, Y.S. Sato, H. Kokawa, Interfacial microstructure evolution and weld formation during ultrasonic welding of Al alloy to Cu, Mater. Charact. 139 (2018) 233–240. doi:10.1016/j.matchar.2018.03.010.
  25. Q. Chu, R. Bai, H. Jian, Z. Lei, N. Hu, C. Yan, Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints, Mater. Charact. 137 (2018) 269–276. doi:10.1016/j.matchar.2018.01.030.
  26. V.V.M. Krishna G, P.K. Satyanarayana, Microstructure and Mechanical properties of Multipass Friction Stir Processed Aluminum Silicon Carbide Metal Matrix, Int. J. Sci. Eng. Technol. 4 (2015) 88–90. doi:10.17950/ijset/v4s2/212.
  27. M. Peel, A. Steuwer, M. Preuss, P.J. Withers, Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Mater. 51 (2003) 4791–4801. doi:10.1016/S1359-6454(03)00319-7.
  28. O.R. Myhr, O. Grong, Process Modelling Applied To 6082-T6 a L U M I N I U M Weldments--I . Reaction Kinetics, Acta Metall. Mater. 39 (1991) 2693–2702.
  29. S. Liu, G. Mi, F. Yan, C. Wang, P. Jiang, Correlation of high power laser welding parameters with real weld geometry and microstructure, Opt. Laser Technol. 94 (2017) 59–67. doi:10.1016/j.optlastec.2017.03.004.
  30. B. Wang, B.B. Lei, J.X. Zhu, Q. Feng, L. Wang, D. Wu, EBSD study on microstructure and texture of friction stir welded AA5052-O and AA6061-T6 dissimilar joint, Mater. Des. 87 (2015) 593–599. doi:10.1016/j.matdes.2015.08.060.
  31. K. Zhang, H. Zhou, L. Ni, Y. Chen, A comparative study of microstructure and tensile properties of Ti2AlNb joints prepared by laser welding and laser-additive welding with the addition of filler powder, J. Mater. Process. Technol. 255 (2018) 477–487. doi:10.1016/j.jmatprotec.2017.12.044.

Downloads

Published

2023-01-30

Issue

Section

Research Articles

How to Cite

[1]
Rajiv Kumar, Harmesh Kumar Kansal, S. C. Vettivel "Characterization of AA6063 using activated TIG welding with TiO2 flux" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 10, Issue 1, pp.55-65, January-February-2023.