The Study of Neural Network Algorithm, Random Forest for Classification of Student Graduation

Authors

  • Riyad Sabilul Muminin  Department of Engineering, Garut University, Garut, Jawa Barat, Indonesia
  • Ana Hadiana  Research Center for Information and Data Science (PRSDI), BRIN, Indonesia , Department of Information System, STIMIK-LIKMI, Bandung, Indonesia
  • Nila Natalia  Departement of Computer Engineering, Politeknik Sukabumi, Sukabumi, Indonesia

DOI:

https://doi.org/10.32628/IJSRSET23103145

Keywords:

Neural Network, Random Forest, Science, Academic performance, Education, and Data Mining

Abstract

The academic performance is one of aspect which has remained the bechmark of the success in learning activities at an university. The indicator of academic performance in the university is the students able to complete their studies on time. Unfortunately, the problem regarding academic performance was associated with the completion time of student studies in Faculty of Economics, University of Garut. In this research explore the model that able to classify the graduation of student through the data mining classification technique by comparing the Neural Network Algorithm dan Random Forest. The classification conducted by evaluating the academic performance based on Semester Performance Index (IPS) first years in the beginning and use the demographics of students as attributes that will be used in the dataset. Based on the results of several model tests from the data train, totaling 1467 data records and 25 attributes. It shows that the 14th Random Forest test model produces a Recall Performance value of 72.70%, 74.70% for Accuracy Performance, 72.80% for Precision Performance and 74.70% for F-measure Performance.

References

  1. E. C. Ploutz. 2018. Machine Learning Applications in Graduation Prediction at the University of Nevada, Las Vegas. https://doi.org/10.34917/13568668
  2. N. Azwanti. 2018. Algoritma C4.5 Untuk Memprediksi Mahasiswa Yang Mengulang Mata Kuliah (Studi Kasus Di AMIK Labuhan Batu). Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1).
  3. A. A. N. Mostafa. 2015. Review of Data Mining Concept and its Techniques Factors Affecting Acceptance of Mobile Banking in Developing Countries View project Factors Affecting Acceptance of E-commerce by SMEs in Libya View project Review of Data Mining Concept and its Techniques Introduction. https://doi.org/10.13140/RG.2.1.3455.2729.
  4. G. E. Sakr, I. H. Elhajj, I. H., Mitri, G., & Wejinya, U. C. (2010). Artificial intelligence for forest fire prediction. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 1311–1316. https://doi.org/10.1109/AIM.2010.5695809
  5. J. Han, M. Kamber, J. Pei. 2012. “Data mining: Data mining concepts and techniques (3rd ed.)”. Morgan Kaufmann Publishers.
  6. S. Hussain, N. A. Dahan, F. M. Ba-Alwib, F. M., & Ribata, N. 2018. Educational Data Mining and Analysis of Students’ Academic Performance Using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447–459.
  7. A. M. Shahiri, W. Husain, & N. A. Rashid. 2015. A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422.
  8. J. Leskovec, A. Rajaraman, & J. D. Ullman. 2014. Mining of Massive Datasets. In Mining of Massive Datasets. https://doi.org/10.1017/cbo9781139924801.
  9. R. Boire. 2014. Applying Data Mining Techniques. Data Mining for Managers, March, 95–113.https://doi.org/10.1057/9781137406194_12
  10. R. S. Baker, J. 2010. Data Mining for Education Data Mining for Education Advantages Relative to Traditional Educational Research Paradigms. International Encyclopedia of Education, 7(3), 112–118.
  11. A. Peña-Ayala. 2014. Educational Data Mining Applications and Trends. Springer.
  12. D. Sugianti. 2012. Algoritma Bayesian Classification untuk Memprediksi Heregistrasi Mahasiswa Baru di STMIK Widya Pratama. Jurnal Ilmiah ICTech, 10(2), 1–5.
  13. E. N. Wahyudi. 2013. Teknik Klasifikasi untuk Melihat Kecenderungan Calon Mahasiswa Baru dalam Memilih Jenjang Pendidikan Program Studi di Perguruan Tinggi. Jurnal Teknologi Informasi DINAMIK, 18(1), 55–64.
  14. P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, R. Wirth. 2000. CRISP-DM Step-by-step Data Mining Guide. SPSS Inc.

Downloads

Published

2023-06-30

Issue

Section

Research Articles

How to Cite

[1]
Riyad Sabilul Muminin, Ana Hadiana, Nila Natalia "The Study of Neural Network Algorithm, Random Forest for Classification of Student Graduation" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 10, Issue 3, pp.517-522, May-June-2023. Available at doi : https://doi.org/10.32628/IJSRSET23103145