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 "Rank Prediction Using Feature Selection and Transformation 

Techniques" seeks to establish the rankings of various countries based on 

their national security and to rank players from the Indian Premier League 

(IPL). This is achieved through the implementation Principal Component 

Analysis (PCA).  

Principal Component Analysis (PCA) is a classical multivariate data 

dimensionality reduction data preprocessing, compression and 

visualization method suitable for many applications in biology, social 

sciences and engineering.  

A limitation of PCA is the lack of interpretation due to nonzero loading 

and inconsistencies in high dimensional elements. Principal component 

analysis (sparse PCA) mainly aims to solve the above problems of PCA. In 

the last few years, many studies have been prepared on the development 

and theoretical analysis of sparse principal component analysis. The aim of 

this article is to conduct a literature review on the latest developments in 

high dimensional sparse principal component analysis from the 

perspective of algorithms and statistical theory. We first provide an 

overview of PCA and sparse PCA. Secondly, different PCA algorithms are 

divided   into several categories, the structures and methods in each 

category are explained in detail, and the sparse PCA package is given. 

Considering that the variance of PCA increases with the increase of the 

index value, the theoretical analysis of sparse PCA was analysed. 
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I. INTRODUCTION 

 

In recent decades, there has been a significant surge in 

data generation, emphasizing the growing importance 

of data and its inherent features. To effectively utilize 

this vast amount of data, feature extraction becomes 

crucial. Dimensionality reduction techniques are key 

methodologies employed to streamline data processing 

by simplifying the feature space, thus enhancing the 

utility of large datasets for analytical purposes. 
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Ranking plays a vital role in various real-world 

scenarios by enhancing the clarity and understanding 

of issues, . By ranking nations that are less developed, 

policymakers can prioritize resource allocation and 

development strategies to elevate these countries' 

status. By applying these techniques, we will rank 

countries based on statistical attributes like population 

and human resources and cricket batsmen based on 

metrics such as runs scored and batting averages. This 

methodology streamlines complex datasets and aids in 

making informed decisions in sports management and 

policy development. This approach aims to illustrate 

how dimensionality reduction can facilitate a more 

straightforward and practical analysis, providing 

strategic insights for improving performance and 

guiding developmental policies. 

 

II. Principal Component Analysis 

 

In Principal Component Analysis [9], Principal 

Component Analysis (PCA) is a method used to reduce 

the dimensions of a dataset with multiple variables, 

enhancing computational efficiency while preserving 

essential information. The key challenge in PCA is 

determining the optimal number of principal 

components, k, that adequately represents the data 

within a k-dimensional subspace (where k<d, with d 

being the dataset's original dimensionality). PCA 

involves calculating the eigenvectors of the data, 

which form the principal components, and compiling 

these into a projection matrix. Each eigenvector has a 

corresponding eigenvalue that indicates its magnitude 

or importance. When some eigenvalues are 

considerably larger than others, it suggests that 

reducing the dataset to a subspace that excludes the less 

significant eigenvectors could be beneficial. By 

focusing on the most meaningful dimensions, PCA 

simplifies the interpretation of complex data, facilitates 

its visualization, and maximizes the retention of crucial 

information. This technique is typically used to project 

data into a new coordinate system where the variation 

is captured in fewer dimensions, often using the first 

two principal components for visual clustering in two-

dimensional space. 

PCA finds utility across various scientific domains, 

including population genetics, microbiome research, 

and atmospheric studies, due to its ability to efficiently 

handle high-dimensional data and aid in the 

identification of underlying data structures. 

 
Fig-a PCA of a multivariate Gaussian distribution 

 

Principal Component Analysis (PCA) is applied to a 

multivariate Gaussian distribution centered at (1,3), 

with standard deviations of 3 along approximately the 

(0.866, 0.5) direction and 1 along its orthogonal 

direction. The vectors are the covariance matrix's 

eigenvectors, each scaled by the square root of its 

corresponding eigenvalue and adjusted so their tails 

originate from the mean. 

 

The principal components of a data set in a real 

coordinate space form a sequence of p unit vectors, 

where each vector is the direction of a line that 

optimally fits the data while being orthogonal to all 

previous vectors in the sequence. This optimal fit 

minimizes the mean squared distance perpendicular to 

the line from the data points. These vectors establish 

an orthonormal basis, rendering the dimensions of the 

data linearly uncorrelated. 

 

PCA involves calculating and using these principal 

components to transform the data basis, often retaining 

only the most significant components and disregarding 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2 

Vikas Babu Gond  Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 297-301 

 

 

 

 
299 

the others. In data analysis, especially where variables 

are interrelated, PCA simplifies these variables into a 

smaller set of independent dimensions. It is especially 

beneficial for reducing the complexity of data by 

projecting it onto a lower-dimensional space using 

only the foremost principal components, thus 

conserving as much variability as possible. 

 

The first principal component is defined as the 

direction that maximizes the variance of the projected 

data. Subsequent components are selected orthogonal 

to the preceding ones and maximize the remaining 

variance. This process is repeated until all dimensions 

of variability are accounted for. Utilized widely in 

exploratory data analysis and predictive modeling, 

PCA helps in compressing data, enhancing 

interpretability without significant loss of information. 

 

III. PCA VS LDA 

 

Linear Discriminant Analysis (LDA) and Principal 

Component Analysis (PCA) are techniques for linear 

data transformation, each targeting specific data 

attributes. PCA identifies principal components to 

maximize data variance, discovering the most 

expansive directions in the dataset. This attribute of 

PCA is advantageous for dimensionality reduction, as 

it projects data onto a new feature space aligned with 

these principal directions. Conversely, unlike PCA, 

LDA is tailored to enhance the distinction between 

multiple classes by incorporating class labels into its 

calculations. LDA focuses on finding directions that 

optimally separate classes, which is particularly 

beneficial for pattern classification tasks, as it projects 

data into a feature space designed to make classes 

distinctly separable. Thus, while PCA reorients data to 

a new coordinate system prioritizing variance 

irrespective of class structure, LDA modifies the data 

framework to optimize class differentiation, a key 

aspect in supervised learning environments 

 

 

 

 

Following are steps of PCA : 

  

Normalize the dataset. 

• Compute the Eigenvectors and Eigenvalues from 

the co-variance or correlation matrix. 

• Arrange the eigenvalues in descending order and 

select the k eigenvectors that correspond to the k 

largest eigenvalues, where k is the number of 

dimensions of the new feature space (k ≤ d). 

• Form the projection matrix W using the chosen k 

eigenvectors. 

• Apply the projection matrix W to the original 

dataset X to derive a k-dimensional feature space Y. 

 

Mathematical Background on Principal Component 

Analysis 

 

PCA aims to reduce the Principal Component Analysis 

(PCA) is designed to reduce the dimensionality of 

datasets by transforming observed variables into a 

smaller number of principal components. These 

components, also referred to as auxiliary variables, are 

optimized linear combinations of the original variables 

that capture most of the variability in the data. 

Specifically, consider a random vector X= (X1, X2, ..., 

Xp) T with p random variables and a covariance matrix 

ΣΣ. This matrix has eigenvalue-eigenvector pairs (λ

1, e1), (λ2, e2), ..., (λp, ep) ordered such that λ1≥

λ2≥...≥λp. Each principal component Li is defined 

as Li = eiTX=ei1X1+ei2X2+...+eipXp for i=1, 2, ..., p, 

where ei represents the components of eigenvector e. 

The principal components are essentially linear 

combinations of the original variables that maximize 

variance while remaining uncorrelated with each 

other. The first principal component, for instance, has 

the highest variance Var(L1)=λ1, which is greater than 

the variance of any other linear combination of these 

variables. The orthogonality of the components 

(Property ii: Cov(Li,Lj) =0 for I ≠ j) ensures that there 
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is no redundancy in the information captured by 

different components. 

The total variance explained by the PCA is equal to the 

sum of the eigenvalues (λ1+λ2+...+λp), and the 

contribution of each component to this total provides 

a measure of its importance in capturing the 

underlying data structure. If the first few components 

account for a significant portion of the variance, they 

can effectively  represent the original dataset with 

minimal loss of information. To ensure fair 

representation across variables with different scales, it 

is standard practice to normalize the data before 

applying PCA. This prevents components from being 

overly influenced by variables with larger scales and 

focuses the analysis on capturing the most significant 

patterns across all variables. 

 

Data Set Description 

 

The various Terminology, which we have used in this 

Dissertation are given below to help in understanding 

the problem in more accurate way. 

 

• Country Dataset Description 

Active Reserve Personnel: This category refers to a 

military organization consisting of civilians who 

engage in military training and can be mobilized for 

full-scale warfare or national defense as needed. 

Typically, these individuals maintain civilian careers 

and are not active soldiers unless called upon. 

Corvettes : Smaller than frigates, corvettes are agile 

warships typically used for coastal defense and patrol 

missions. 

Reserves of Foreign-Exchange and Gold: This includes 

the holdings of a country's central bank in foreign 

currencies and gold, providing a buffer and support for 

national economic stability. 

 

IPL Dataset Description 

Runs: Indicates the total runs a player scored during 

the IPL 2016 season. A higher run total typically 

reflects better performance. 

Batting Average (Ave): The statistic represents the 

average number of runs a batsman scores per dismissal. 

It provides a measure of consistency and  skill, with 

higher averages indicating superior performance. 

However, this metric can be misleading if a batsman 

remains not out frequently. 

Batting Strike Rate (SR): The Calculated as the number 

of runs scored per 100 balls faced, this rate measures a 

batsman's scoring efficiency. Essential in the 

Twenty20 format, a higher strike rate generally 

suggests a more aggressive and impactful batting style. 

Twenty20: However, a high strike rate accompanying 

a low batting average is not desirable. 

 

IV. RESULTS 

 

The cumulative graphs generated by principal 

component analysis is shown below. Here the first 

principal component is contributing around 66 per- 

cent(figure b) in IPL dataset and around 55 

percent(figure c) in country dataset. 

 

 
Figure b : Cumulative graph of IPL data set using PCA 

 
Figure c: Cumulative graph of Country data set using 

PCA 
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V. CONCLUSION 

 

The comparison between the ranking of countries by 

experts on GlobalFirepower [13] and those derived 

from our algorithm demonstrates significant alignment: 

eight out of the top ten countries match, although their 

specific rankings differ. A similar outcome is observed 

with cricket data, where the rankings generated 

through our methods align with those listed on 

Cricbuzz [2], with all top ten entries matching but 

some positions varying. These findings suggest that our 

algorithm is highly effective for accurately identifying 

top-ranked entities, and in many cases, their precise 

rankings as well. 
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