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 The object of this article is present the orthogonally of different two 

concepts. We proved: Assume �̇�  and �̇�  are orthog gd and l(rr)c on 2-

tortion free semiprime ring �̇�  s.t. �̇�  is commutative then 𝒹 ̇ and �̇�  are 

orthog where �̇� is associated derivation of �̇�. 
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I. INTRODUCTION 

 

The orthogonal is one of important concept in 

algebra[2,3] where in this paper we study the 

orthogonal of left (resp. right)-centralizer and 

derivation on ring . we prove that  

Let R be semiprime ring, d and t 

are derivation and left (resp.righr)-centralizer on R 

respectively then d and t are orthogonal iff ∃ a,b∈R, 

b∈Z(R);s.t. dt(u) = au+ ub, for all u∈�̇�. 

The following result we needed later 

Lemma 1.1:[1] Assume �̇�  with char. ≠2, semi-prime 

and �̇�,�̇� ∈ ℛ́ what follows is equivalent 
 ∀�̇� ∈ ℛ̇ , 

i. �̇��̇��̇� = 0  

ii. �̇��̇��̇� = 0  

iii. �̇��̇��̇� + �̇��̇��̇� = 0  

If one of above conditions is satisfy then   �́� �́�=0 =�́� �́�. 

II. ORTHOGONAL GENERALIZED DERIVATION 

AND LEFT (RESP. RIGHT)-CENTRALIZER OF 

RING 

Definition 2.1: Assume �̇� is a generalized derivation 

(for shout gd) on a ring ℛ̇ and 𝓉 be left (resp.right)-

centralizer ( for shout l(rr)c)on ℛ̇  then �̇�  and �̇�  is 

orthogonal (for shout orthog) iff  

∀�̇�,�̀� ∈ℛ ́ , �̇�(�̀�)ℛ̀�̇�(�̀�) = 0 = �̇�(�̀�)�̇��̇�(�̀�) 

Example2.2: Assume ℛ́ be a ring Ṡ = ℛ́ × ℛ́ , define 

derivation �̇�1 and l (r r)c �̇� on�́�.   

If �̇� be defined on �̇�×�̇� by �̇�((�̇�,�̇�),(�̇�1,�̇�1))= (𝐷1̇(�̇�,�̇�),0), 

then �̇� is derivation on �̇�x�̇� associated with derivation 

�̇� on Ṡ ×̇ �̇� defined by �̇�((�̇�,�̇�),(�̇�1,�̇�1))= (𝑑1̇(�̇�,�̇�), 0) s.t. 

�̇�1 is derivation on �̇�. 

and �̇� is defined on �̇�×�̇� by 

T(( �́� , �̇� ),( �̇� 1, �̇� 1))= (0 , �̇� ( �̇� 1, �̇� 1)), then �̇�  is left 

(resp.right)-centralizer on �̇� × �̇� . Hence �̇�  and �̇�  are 

orthog on �̇�×�̇�.  
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Example2.3: Assume ℛ̇ = {[
𝑜 𝒶
𝑜 𝑜

] : 𝒶 ∈ 𝒵}  be a ring 

defines �̇�, �̇� on ℛ̇ by  

�̀� [
𝑜 𝒶
𝑜 𝑜

] = [
𝑜 8𝒶
𝑜 𝑜

]  associated with derivation �̇�  on 

ℛ̇ by 

�̇� [
о 𝒶
о о

] = [о 3𝒶4

о о
] 

�̀� [
о 𝒶
о о

] = [o 5𝒶7

о о
] ; ∀ [

о 𝒶
о о

] ∈ ℛ̇ 

Then �̀� and �́� are orthog.  

Lemma 1: Let �̇� and �̇� be gd and l(rr)c on a semiprime 

ring �̇� is orthog iff  

 �̀�(�́�) �́�(�̀�)+ �̀�(�̀�)�̇�(�̀�)=0, ∀�́�,b̀∈ℛ́. 

Proof: Assume �́� and �̇� are orthog 

To prove �̀�(�̀�) �̀�(�̀�) + �̇�(�́�) �́�(�́�)=0, for all�́�,�̇�∈�̇�. 

Since �́� and �́� are orthog 

 �̇�(á)�̇��̇�(ḃ)=0= �̇�(ḃ)�̇��̇�(ȧ)             

By Lemma 1.1 we get 

 �̀�(�́�) �̀�(�́�) = �̀�(�́�) �̀�(�̀�) 

 �́�(�̀�)�̇�(�́�)+ �̇�(�́�)�̀� (�̀�)=0 

Conversely 𝔇 ́ (�́�)�̇�(�̀�)+ �̀�(ḃ)�́� (�̀�)=0 

Replace �́� by b́á 

�̇�(�̇�)�̇�(ḃȧ)+�̇�(ḃȧ)�̇�(�̀�) = 0    

�̇� (�̀�) �̇�(b̀)�́� + �̀�(�́�) �́��̀�(�́�)=0  

 �̇�(b́)ȧ�̇�(�̀�)=0 

by Lemma1.1, �̇�(ȧ)ȧ�̇�(�̇�) +�̇�(�̇�)ȧ�̇�(ȧ) =0 

hence �̇� and �̇� are orthog 

 

III. MAIN RESULTS  

 

Lemma 2: Let �̇� and �̇� be gd and l(rr)c on a semiprime 

ring �̇� then �̇� and �̇� are orthog. if and only if �̇��̇�=0. 

Proof: suppose that �̇��̇�=0 and ȧ,ḃ∈�̇� 

0= �̇��̇�(ȧḃ)          

  = �́�(�́�(�́�)b́) 

 = �̀�(�́�(�̀�))�̀� + �̀�(�̀�)�́� (b̀) 

= �̇�(�́�)�̀�(b́)  

Replace �̀�by �́�𝑤 ̇  

0= �̇�(ȧ)�̇��̇�(ḃ) 

By lemma1.1;   0= �́�(�́�)�̇��̇�(�́�)+ �́�(�̀�)�̇��̇�(�́�) 

⟹   �̀�and �́�are orthog 

Conversely let  �́�and �́�are orthog 

 �̀�(�̈�)�̀��̇�(�́�)= 0 

 �́�(�̇�(�̀�)�́��̀�(�́�))=0 

 �́�(�̇�(�́�)) �̇�(ẇ)�̇�(�̇�(�̀�))=0 

Replace �̇�(�̇�(ȧ)) by �̇�(�̀�(�́�)) and �̇�(�́� (�̀�)) by �̇�(�̇� (b́)) 

 �̇�(�́�(�̀�))�̇��̇�(�̇�(�̀�)) = 0 

By semiprimeness, �́�(�̇�(ḃ))=0; for all ḃ∈�̇�, �́��̇�=0. 

Lemma 3: Let �̇� and �̇� be gd and l(rr)c on a semiprime 

ring �̇�, of char≠2, then �̇� and �̇� are  

orthog iff   �̇��̇� +�̇��̇� =0. 

Proof: assume that �̇��̇�+�̇��̇� =0; ∀ ȧ,ḃ∈Ṙ 

0= (�̇��̇�+�̇��̇�)(�̇��̇�) 

 = �́�(�̀�(�́��̀�)) + �̀�(�̇�(�́��̀�)) 

 = �̀�(�́� (�̇�)�̀�) + �̇�(�́� (�̇�)b̀ +ȧ�̀�(�́�)) 

 = �́�(�̀� (�̇�))�́� + �̇�(�̇�)�̀�(b̀)+ �̇�(�́�(�̀�))b́ + �́�(�̀�) �́�(�̀�) 

 = 2 �̇�(�́�) �́�(�̀�) 

By 2-torsion free, �̇�(á)�̇�(ḃ)=0 

by result1.1; �̇� and �̇� are orthog. 

Conversely; let �̇� and �̇�  are orthog, by Lemma 2 we 

get �̇��̇�+�̇��̇�=0. 

Lemma 4: Assume �̇� is semiprime of char.≠2 if �̇�2=�̇�2, 

then �̇�- �̇� and �̇�+�́� are orthog. 

Proof: ((𝔇 ̇ - �́�) (�́� +�̀�) + (�̇�+�́�) (�̇�-�́�))(�̀�) 

         = (𝔇 ́ -�̀�)(�̀�)(�̀�+�́�)(�̀�) + (�́� + �̀�)(�̀�)(�́� - �̇�)(�̀�) 

        =(�̃� (�̀�)- �́�(�̇�))(�́� (�̀�)+ �̇�(�̀�))+ (�́� (�̇�)+ �́�(�́�))(�̀� (�́�) 

- �́�(�̀�)) 

       = �̇�2(�́�)+ �̀�(�̇�) �̀�(�́�)–�̀�(�́�) �̇�(�̇�) –�́�2(�́�) + �́�2(�̈�) –

�́�(�́�)�̀�(�̇�) +�̀�(�̀�) �́�(�̀�)– �̇�2(�́�) 

       =0  

By Lemma1; �́�+�̀� and �̇�-�̀�are orthog. 

Lemma 5: Assume Ṙ be semi-prime ring ; �̇� , �̇� are gd 

and l(rr)c on �̇� s.t. �́�2=�̇�2, then �̇�-�̇� and �̇�+�́� are orthog. 

Where �̇� is associated derivation of �̇�. 

Proof: ((d́-�̀�) (d̀+�́�) + (�̇�+�̀�) (d̀-�́�))(�́�) 

         = (d̀-�́�)(�́�)( d̀+�́�)(�́�) + (�̀�+�́�)(�̇�)( d̀-�́�)�́�) 

        = ( ḋ(�̇�)- �́�(�̇�))( �̀�(�́�)+ �́�(�̀�))+ ( d̀(�́�)+ �̀�(�́�))( d̀(�̀�)- 

�̀�(�́�)) 

       = �́�2(�̀�)+ḋ(�̀�)�̀�(�̇�) – �̀�(�́�)�̇�(�́�) –�̇�2(�̇�) + �́�2(�̀�) – d̀(�̀�) 

�́�(�̇�) + �́�(�̀�)�̀�(�́�) – �̇�2(�́�) 

      = 0 

By Lemma1; �́�+�́� and �̇�-𝓉 ̇ are orthog. 
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Lemma 6: Assume �̇� be semiprime ring then �̇� and �́� 

are orthog iff  ∃ 𝒸,ℯ́ ∈ℛ̀,  

ℯ́∈Z(ℛ̀); s. t. �̇��̇�(�̇�) = 𝒸ȧ+ ȧ�̇�, ∀ �́�∈ℛ̇. 

Proof : Let �̇��̇�(ȧ) = 𝒸ȧ+ ȧ�̇�  

Replace ȧ by ȧḃ 

�̇��̇�(ȧḃ) = 𝒸ȧḃ + ȧḃ�̇� 

�̇�(�̇�(á)ḃ) = 𝒸ȧḃ + ȧḃ�̇� 

�̇��̇�(á)�́� +�́�(�̇�)�̇�(ḃ)= �̇��̇��̇� + ȧḃ�̇� 

�̇�ȧḃ+�̇��̇�ḃ + �́�(�̇�)�̇�(�̇�) = 𝒸ȧḃ + ȧ�̇��̇� 

�̇��́��̇�+ �́�(ȧ)�̇�(ḃ)= ȧḃ�̇� 

replace ḃ by ḃȧ 

á�̇�ḃȧ +�̇�(ȧ)�̇�(ḃȧ)= ȧḃȧ�̇� 

á�̇��̇�ȧ+ �̇�(�̀�) �̇�(�̀�)ȧ+ �̇�(�̀�)�̇�𝒹(�̀�)= ȧ�̇�ȧ�̇� 

ȧḃ�̇�ȧ+ �̇�(�̀�)�̇��́�(�̀�) = ȧ�̇��̇�ȧ 

�̀�(�́�)�̇��̇�(�̇�)=0 

by lemma 1.1 ; �́�and �̇� are orthog. 

Conversely, since �́� and �̇� are orthogo, �̇��̇� =0, so we 

can choose 𝒸=�̇�=0 so that 

�̇��̇�(�̇�) = 𝒸�̇� + �̇��́�. 

Lemma 7: Assume �̇� and �̇� are orthog gd and l(rr)c on 

2-tortion free semiprime ring �̇� s.t. �̇� is  

commutative then 𝒹 ̇ and �̇�  are orthog where �̇�  is 

associated derivation of �̇�. 

Proof:  Assume �̇� and �̇� are orthogonal 

⟹ �̇�(ȧ)�̇��̇�(ḃ) =(0) 

By lemma 1.1 ⟹ �̀�(�̀�) �̀�(�̀�) =0 

Since �̀�  is commutative ⟹ �̀� ( ḃ ) 

�̀�(�̀�)=0.                                 …(1) 

Replace �̇�ȧ by ȧ  

⟹ �̀�(�̀�) �̀�(�̀�ȧ)= 0 

⟹ �̀�(�́�) �̀�(�̀�)ȧ + �̀�(�̀�)�̇��̇�(�̇�)= 0 

⟹ �̇�(ḃ)�̇��̇�(ȧ) =0 by (1) 

⟹�̇�(ȧ)�̇��́�(ḃ) =0. By commutative of �̇� 

⟹ �̇� and �̇� are orthog. 

 

IV. CONCLUSION 

 

The concept of orthogonal is the important topic in 

algebra. The concept of orthogonality between two 

different types of mappings  is to generalize the 

definitions of orthognol of same typs of mappings on 

ring and to Specify the study between two concepts:  

Orthogonal generalized derivation and left (resp. right) 

centralizer as well as orthogonal between derivation 

and left (resp. right) centralizer.  
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