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 Sub-Riemannian geometry extends classical Riemannian frameworks by 

defining metrics only on constrained directions within manifolds, 

naturally modeling systems with nonholonomic constraints. This paper 

investigates the nature and impact of singularities—points where the 

geometric structure or metric degenerates—on the local and global 

properties of sub-Riemannian manifolds. We analyze metric behavior near 

singularities through nilpotent approximations and study their influence 

on geodesic existence, uniqueness, and stability, with particular emphasis 

on abnormal geodesics. Further, we explore the crucial role these 

singularities play in optimal control problems for constrained dynamical 

systems, illustrating how they affect controllability, accessibility, and 

trajectory synthesis. Through canonical examples like the Heisenberg 

group and Martinet distribution, this work highlights the intricate 

interplay between geometry and control, laying groundwork for future 

advances in both theoretical understanding and practical applications. 
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INTRODUCTION 

Sub-Riemannian geometry generalizes classical 

Riemannian geometry by relaxing the requirement 

that a metric be defined on the entire tangent bundle 

of a manifold. Instead, the metric is defined only on a 

subbundle, known as the horizontal distribution, 

which encodes the directions in which motion or 

flow is permitted. This framework naturally arises in 

many fields, including robotics (nonholonomic 

systems such as wheeled vehicles), mechanical 

systems with constraints, and mathematical control 

theory. 

The fundamental challenge and richness of sub-

Riemannian geometry lie in its singularities—points 

where the distribution or its Lie algebraic properties 

degenerate, or where the metric exhibits non-smooth 
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behavior. Unlike Riemannian manifolds, geodesics 

and distance functions can behave in surprisingly 

complex ways near these singular points. For 

instance, geodesics may not be unique, and some 

extremal curves, called abnormal geodesics, may not 

be minimizers in the classical sense but still appear as 

candidates for optimal trajectories in control 

problems. 

This paper explores the detailed structure of 

singularities in sub-Riemannian geometry, the metric 

properties they induce, and their implications for 

control theory. We analyze how singularities affect 

the existence, uniqueness, and stability of geodesics 

and examine the impact on controllability and 

optimal control synthesis in systems constrained by 

nonholonomic dynamics. 

Our approach leverages tools from geometric analysis, 

Lie algebra theory, and optimal control, synthesizing 

these perspectives to provide a comprehensive view 

of the subtleties introduced by singularities in sub-

Riemannian spaces. 

 

PRELIMINARIES 

2.1 Sub-Riemannian Manifolds: Definitions and 

Examples 

Definition 2.1 (Sub-Riemannian Manifold): A sub-

Riemannian manifold is a triple         where 

   is a connected smooth manifold of dimension 

 . 

      is a smooth distribution of constant rank 

   , i.e., for each    ,        is a  -

dimensional subspace varying smoothly with  . 

   is a smoothly varying inner product on  . 

The distribution   represents the allowed directions 

of motion. The metric   allows the definition of 

lengths and angles only on vectors tangent to  . 

Example 2.1 (Heisenberg Group): The simplest and 

most studied example is the Heisenberg group   , a 

3-dimensional manifold    with coordinates         

and distribution 

      {      
 

 
          

 

 
  }  

equipped with the standard inner product making 

      orthonormal. 

2.2 Admissible Curves and Sub-Riemannian Distance 

A curve           is horizontal (or admissible) if 

 ̇          for almost every  . The length of a 

horizontal curve is 

     ∫ √       ̇     ̇    
 

 

    

The sub-Riemannian distance between two points 

      is defined by 

                                             

By the Chow–Rashevskii theorem, if   is bracket-

generating (meaning vector fields tangent to   and 

their iterated Lie brackets span   ), then any two 

points can be connected by a horizontal curve, 

ensuring   is finite and defines a metric topology 

coinciding with the manifold topology. 

2.3 Control-Theoretic Formulation 

Sub-Riemannian geometry is equivalent to the study 

of a control system 

 ̇    ∑  

 

   

             

where         form an orthonormal frame of  , and 

        are measurable control inputs. 

The control objective is often to minimize the energy 

     
 

 
∫ ∑  

 

   

 

 

        

subject to boundary constraints. The optimal controls 

correspond to geodesics in the sub-Riemannian 

manifold. 

2.4 Singularities and Abnormal Geodesics 

Definition 2.2 (Abnormal Extremal): An extremal 

         is abnormal if it corresponds to a solution 

of the Pontryagin Maximum Principle (PMP) with 

the Hamiltonian multiplier of the cost function equal 

to zero. Abnormal geodesics may not be length-

minimizing but can be critical in describing the 

reachable set or singularities. 

Singularities appear in various forms: 

 Points where the distribution rank drops (rank-

varying distributions). 
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 Points where abnormal extremals exist, and the 

standard regularity of the metric fails. 

 Points where the metric tangent cone is non-

Euclidean or non-smooth. 

 

METRIC STRUCTURES NEAR SINGULARITIES 

3.1 Nilpotent Approximation and Tangent Cones 

At any point    , the Lie algebra generated by   

defines a filtration 

  
        

      
       

    

which stabilizes to     due to bracket-generating 

assumption. 

The nilpotent approximation replaces the manifold 

locally by a Carnot group (a simply connected 

nilpotent Lie group with a stratified Lie algebra) that 

approximates the geometry at  . This approximation 

captures the local metric structure, especially near 

singular points, by "linearizing" the bracket relations. 

3.2 Metric Differentiability and Volume Growth 

Unlike Riemannian manifolds, the sub-Riemannian 

distance function may fail to be smooth at singular 

points, leading to metric non-differentiability 

phenomena. Volume growth near singularities is 

governed by the Hausdorff dimension, which often 

exceeds the topological dimension. 

3.3 Stratification of Singular Sets 

The singular set can often be decomposed into a 

union of smooth manifolds of various dimensions. 

Each stratum exhibits different metric and geometric 

properties, allowing for piecewise regular analysis. 

Perfect! I’ll continue with the next major sections: 

Geodesic Behavior Near Singularities and 

Applications to Control Theory, preserving rigor and 

clarity. 

 

GEODESIC BEHAVIOR NEAR SINGULARITIES 

Understanding geodesics is fundamental in sub-

Riemannian geometry, especially near singular points 

where classical regularity breaks down. This section 

investigates the existence, uniqueness, and stability of 

geodesics in neighborhoods containing singularities. 

4.1 Normal and Abnormal Geodesics 

Geodesics in sub-Riemannian geometry arise as 

projections of extremal curves      in the cotangent 

bundle     that satisfy the Pontryagin Maximum 

Principle (PMP). 

 Normal Geodesics: Correspond to nonzero 

Lagrange multiplier for the cost in PMP, derived 

from the Hamiltonian 

     
 

 
∑ 

 

   

     
   

  where      . 

 Abnormal Geodesics: Occur when the multiplier 

of the cost is zero. These geodesics depend only 

on the distribution geometry, independent of the 

metric  . 

Remark: While normal geodesics locally minimize 

length, abnormal geodesics may fail to be minimizers 

but are critical in describing reachable sets and 

singularities. 

4.2 Existence and Uniqueness 

 Existence: By the Chow–Rashevskii theorem, any 

two points can be joined by an admissible curve; 

the existence of geodesics (minimizers) follows 

by standard arguments in geometric control 

theory. 

 Uniqueness Failure at Singularities: Near singular 

points, uniqueness may fail due to branching of 

geodesics, bifurcations, or the coexistence of 

normal and abnormal geodesics connecting the 

same endpoints. 

 Cut Locus and Conjugate Points: Singularities 

often coincide with or lie near the cut locus — 

the set where geodesics lose global minimality — 

and conjugate points where geodesics lose local 

optimality. 

4.3 Stability and Bifurcation 

The stability of geodesics under perturbations is 

delicate near singularities: 

 Small changes in initial conditions or controls 

can drastically alter trajectory behavior. 
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 Bifurcation theory applies to analyze how 

geodesics split or merge near singular points. 

 This has direct implications for control 

robustness and planning. 

 

APPLICATIONS TO CONTROL THEORY 

Sub-Riemannian geometry provides the natural 

language for nonholonomic control systems, where 

system states evolve under constraints that limit the 

directions of feasible motion. 

5.1 Nonholonomic Systems and Sub-Riemannian 

Structure 

A nonholonomic system is a control system with 

constraints on velocities not integrable into position 

constraints. Examples: 

 Mobile robots with wheels that cannot slip 

sideways. 

 Aerospace vehicles constrained by momentum or 

fuel flow. 

 Quantum systems with restricted control 

Hamiltonians. 

These systems are modeled by vector fields    

defining a distribution  . The system’s evolution is 

 ̇  ∑  

 

   

          

where controls    satisfy energy or input constraints. 

The cost of moving between states corresponds to 

sub-Riemannian length. 

5.2 Role of Singularities in Control Synthesis 

 Abnormal Trajectories: Singularities often 

correspond to abnormal extremals in control, 

which may be optimal or suboptimal trajectories. 

Their identification is crucial for understanding 

controllability limits. 

 Controllability and Accessibility: At singular 

points, the rank condition may fail locally, 

causing loss of controllability or requiring more 

complex control strategies. 

 Optimal Control Challenges: Singularities 

introduce difficulties in numerical algorithms for 

trajectory optimization, as cost functionals 

become non-smooth or ill-conditioned. 

5.3 Practical Examples 

 Wheeled Vehicle Parking Problem: The car’s 

motion constraints define a rank 2 distribution in 

3D configuration space with singularities at zero 

velocity or steering limits. 

 Quantum Control: Singularities relate to 

degeneracies in control Hamiltonians, impacting 

reachable sets in state space. 

 Robotics and Motion Planning: Identifying 

singularities aids in path planning algorithms that 

avoid unstable or suboptimal trajectories. 

 

CASE STUDIES 

6.1 Heisenberg Group 

 The simplest nontrivial sub-Riemannian 

manifold. 

 Singularities correspond to points where 

abnormal geodesics exist. 

 The metric tangent cone is a Carnot group, 

facilitating explicit computations. 

 Exhibits phenomena like non-unique geodesics 

connecting the same points. 

6.2 Martinet Distribution 

 A rank 2 distribution in a 3D manifold where the 

distribution rank drops along a singular surface. 

 Classical example illustrating how singularities 

complicate geodesic structure and control 

accessibility. 

 Explicit abnormal geodesics exist and are critical 

in control synthesis. 

 

OPEN PROBLEMS AND FUTURE DIRECTIONS 

 Extending nilpotent approximation techniques to 

analyze more complicated singular sets. 

 Numerical methods to handle abnormal 

trajectories and singularities in optimal control 

problems. 

 Metric measure theory for sub-Riemannian 

manifolds with singularities. 
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 Stochastic control problems where noise 

interacts with singular geometric structures. 

 

CONCLUSION 

The interplay between singularities and metric 

structures in sub-Riemannian geometry profoundly 

impacts control theory, both theoretically and 

practically. Understanding singularities allows for 

deeper insights into geodesic behavior, controllability, 

and optimal trajectory synthesis in constrained 

systems. Future research in this rich area promises to 

advance mathematical theory and engineering 

applications alike. 
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