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 Ride-sharing companies like Uber and Lyft use game theory-based pricing 

models to optimize supply and demand. Dynamic pricing models like surge 

multipliers change prices based on current conditions, optimizing driver 

availability when demand is high but not charging consumers a lot. The 

study examines large-scale strategies like "Uniform Pricing (UP)", 

"Differential Customer Pricing (DCP)", and "Differential Driver Pricing 

(DDP)" to understand how they influence market equilibrium. The use of 

machine learning models imposes predictive values on demand variations in 

order to accommodate precise fare adjustment. Dynamic price schemes also 

include the waiting time factor, road congestion, and local demand 

dynamics to optimize effectiveness and user satisfaction. Outcomes are that 

dynamic pricing, in conjunction with optimized wait times, encourages 

overall welfare in minimizing idle time for drivers as well as reducing 

customer waiting time. However, problems like collusion among drivers, 

price fairness, and regulatory concerns continue to persist. Future research 

has to focus on developing ethical pricing strategies, improving 

transparency in algorithmic decision-making, and promoting cross-platform 

collaboration in order to ensure a sustainable and fair ride-sharing 

ecosystem. 
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INTRODUCTION 

A newly emerging approach has arisen in the last few 

years within transportation systems: the utilization of 

collaborative taxi networks [1]. The phrase social taxi 

network is used to characterize ride-sourcing programs 

that provide services to riders through a community of 

personal automobiles. Taxi riders within these groups 

engage alongside their clients through utilization of 

smartphones. Lyft and Uber serve as prime examples 

for such services [2] . Within various taxicab groups, an 
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increasing number of individuals traveling to and from 

work rely on mobile devices which enable clients to 

find providers of transport according to their 

respective geographical areas [3] .  

Similarly, vendors of services, such as taxi drivers, rely 

on applications for smartphones to link them with 

prospective clients according to their geographical 

vicinity. Since these applications operate upon a spatial 

schedule, operators select what they want in areas, an 

alteration with the supply and demand balance being 

inevitable. Each taxi driver's reasonable decision is to 

select a location with a heightened likelihood of 

attracting customers who are interested. For instance, 

urban centers and retail regions are locales that possess 

significant appeal to consumers [4] .  

A significant number of these consumers require door-

to-door transportation solutions. Nonetheless, given 

that this information is well recognized, the majority 

of service providers focuses on these regions. This 

resulted in certain regions being excessively saturated 

by service providers, while others exhibit a scarcity or 

complete absence of such vendors. Therefore, the bulk 

about applications for smartphones managing multiple 

taxi connections have a dynamic pricing model which 

fluctuates according to service availability [5] . During 

periods of high demand, transportation costs are 

elevated, and conversely, these are reduced during off-

peak times. 

Current alternatives to various taxi service providers 

such as Uber and Lyft utilize demand-driven strategies 

like dynamic pricing or pre-established fares [7]. Such 

strategies integrate dynamic multipliers into the 

pricing framework. The following structure is 

susceptible to the phenomenon known as the tragedy 

of the commons, [8] It relates to scenarios when assets 

become communal and those making decisions operate 

in their individual self-interest. The pricing escalation 

strategy relies on self-scheduling since it is mostly 

effective and dependable among vehicle operators and 

service consumers. The objective of the subsequent 

study is not to provide a replacement, however, to 

present a method that enhances the current self-

scheduling technology. The suggested method depends 

on addressing the regional allocation issue. The 

challenge of efficiently assigning the way to workers 

according to their preferences and personal schedules 

is referred to as a region sharing game.  

A multitude of factors might complicate the territorial 

allocation game. The primary issue lies in organizing 

the game to enable the creation of a beneficial model. 

The game comprises three components: the 

participants, the smartphone application, as well as the 

utilized assets. The sophisticated program can function 

both as a participant or a game overseer. The 

configuration of the game differ according to its 

desired objective. Furthermore, if players utilize 

commodities as techniques throughout their 

associations, the game can be categorized as either 

symmetric or asymmetric. In symmetric games, the 

participants possess identical sets of strategies. A game 

is deemed symmetric when only two possible actions 

are accessible to all players. Asymmetric games are 

generally more inclusive since players may possess 

varying strategic approaches.  

Thus, it is crucial to ascertain if the activity is 

symmetric or asymmetric. Moreover, after defining a 

game's attributes, a subsequent issue emerges in 

identifying a solution mechanism which can produce a 

stable outcome. A stable outcome is a self-sustaining 

result that meets specific conditions. This introduces 

an additional challenge in delineating the territory-

sharing game. In game theory, a constant strategy 

denotes a stable equilibrium. Three principal varieties 

of equilibria may be identified: The previously 

prevailing methodology equilibrium, Nash 

equilibrium, linked to a state of equilibrium [9]. 

Establishing the preferred equilibrium enables the 

creation of an effective model. This also guide the 

assessment of the obtained solution, which presents 

the final challenge: evaluating the effect of the 

suggested model on performance as a whole (i.e., 

system welfare). The question of territorial sharing 
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illustrates the tragedy of the commons; thus, a stable 

resolution does not guarantee effective resource 

exploitation. The "Price of Anarchy (PoA)" is 

employed to determine the (in) efficiency of the 

proposed solution. 

Ride-sharing apps like Uber and Lyft use game theory 

to optimize pricing and match riders with drivers 

efficiently. Their algorithms analyze supply, demand, 

and competition to adjust fares dynamically, ensuring 

a balance between driver availability and customer 

affordability. Surge pricing increases fares when 

demand is high, encouraging more drivers to 

participate, while lower prices attract riders during off-

peak times. This strategic pricing model helps 

maximize profits, reduce wait times, and improve 

overall service efficiency. 

Aim of the study 

The current research tries to examine the contribution 

game theory to ride-sharing companies such as Uber 

and Lyft through pricing algorithms, surge multipliers, 

and market equilibrium strategies. The research 

focuses on the effect of dynamic pricing on drivers' 

participation, customers' affordability, and efficiency 

of the system. Moreover, the research contrasts various 

models of pricing— UP, DCP, and DDP —in order to 

assess their suitability in the ride-sharing platform's 

sustainability. Through the determination of issues like 

driver collusion, price equity, and regulatory issues, 

the research aims to contribute towards more efficient 

and equitable ride-sharing price models. 

 

REVIEW OF LITERATURE  

Kim et al. (2025) [15] presented a new method of 

analysis of strategic interactions on transportation 

networks through Mobility-on-Demand (MoD) 

services. Their study focuses on reaching equilibria 

among firms and customers, where a single firm 

optimizes pricing and route planning strategies for 

greater profitability while considering travelers' mode 

choice through a multinomial logit framework. They 

point to distinctive challenges in the implementation 

of profit maximization strategies for transportation 

networks owing to the effect of network topology and 

other constraints. Likewise, Cummings et al. (2025) 

[16] suggested that some of the services can be 

outsourced by transit agencies to MoD providers, 

which would result in better quality of service, 

increased coverage, and lower costs. Their fare-setting 

strategy simultaneously optimizes fares and discounts 

within a multimodal system through a two-stage 

decomposition procedure, ensuring fair treatment and 

efficacy with regard to transit and profit-maximizing 

goals. 

Koirala et al. (2024) [11] analyzed the competition 

between ride-sharing platforms like Uber and Lyft, 

highlighting their dual function of attracting both 

drivers and passengers. They contended that in theory, 

competition should translate to improved payouts for 

drivers, but empirical evidence indicates otherwise. 

According to their findings, a profitable duopoly can 

only be achieved if platforms collude to reduce driver 

wages. Dong et al. (2024) [12] also investigated the 

effectiveness of ride-sharing systems in analyzing 

cooperative markets where platforms pool trip requests 

to achieve maximum efficiency. Their work suggested 

a dynamic graph-based approach proving that 

collaboration enhances trip matches, minimizes travel 

distances, and maximizes overall profitability relative 

to competitive frameworks, where segmentation limits 

potential matches. 

Katsamakas et al. (2024) [13] proposed the notion of 

responsible users who decide on the basis of corporate 

social responsibility (CSR) preferences. Their work 

investigated market asymmetries and their effects on 

platform pricing and competition and concluded that 

user CSR preferences drive platform strategies 

irrespective of how they are derived. Their work adds 

to the platform competition literature by incorporating 

responsible user behavior into strategic decision-

making. On another occasion, Tripathy et al. (2023) 

[14] examined ride-hailing drivers' collusion on ride-

hailing platforms and discovered that drivers switch 
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off strategically in order to form artificial shortages and 

thus induce surge prices. This explanatory framework 

stresses that cooperative behavior is more likely where 

customers do not show great reactivity toward waiting 

times but are instead motivated to benefit the platform 

by virtue of increased surge prices. 

Game theory plays a crucial role in shaping ride-

sharing pricing, competition, and strategic behavior. 

Chenkai et al. (2023) [15] analyzed collusion among 

drivers, showing that they go offline when fares are 

low and return when prices rise, leading to cyclic price 

fluctuations. Their continuous-time, non-atomic 

model proved that such behavior forms a Nash 

equilibrium but results in lower payoffs in dense 

markets. They suggested price floor mechanisms to 

stabilize the market. Amar et al. (2023) [16] applied 

game theory to the territory-sharing problem in social 

taxi networks, using a bargaining-based solution that 

ensures a no-regret outcome, leading to a fair and 

efficient allocation of ride-sharing territories. 

Matching and driver experience issues have also been 

investigated using game-theoretic methods. Gao et al. 

(2022) [17] proposed the VOMA mechanism, a voting-

based method that maintains privacy while 

maximizing ride-matching in community ride-

sharing. Their method balances drivers' and riders' 

preferences without full data revelation. Cram et al. 

(2022) [18] studied the effects of algorithmic control on 

Uber drivers, finding both positive and negative 

techno-stress effects. Transparent algorithmic control 

was also discovered to improve commitment and lower 

negative stress. These studies give a balanced 

understanding of competition, pricing, and driver 

well-being in ride-sharing markets. 

2.1 Research Gap  

Even with continuous research offering informative 

feedback on ride-sharing game theory, there are some 

areas that remain to be addressed. To start with, 

previous studies emphasize competition and profit 

maximization but lack detail in explaining how 

algorithmic pricing tools affect driver retention and 

long-term sustainability. Second, though the study 

refers to collusion and surge pricing, limited 

information is cited about regulatory response and its 

efficiency in curbing market distortions. Third, cross-

platform coordination is shown to be a likely source of 

efficiency, but its feasibility and probable 

disadvantages are yet to be studied in depth. Lastly, the 

moral impacts of algorithmic pricing, especially on 

poor consumers and market equity, must be studied 

further. Closing such knowledge gaps has the potential 

to result in fuller knowledge of how game theory may 

be utilized to drive pricing efficiency with an even and 

sustainable ride-sharing market. 

 

RESEARCH METHODOLOGY  

This research examines ride-sharing price models, 

including dynamic pricing, price-matching algorithms, 

and market equilibrium. It examines surge pricing for 

supply-demand matching, explores matching 

techniques like the first-dispatch protocol and 

batching, and employs a game-theoretic framework to 

examine Nash equilibrium in pricing behavior. The 

study evaluates uniform pricing, differential customer 

pricing, and differential driver pricing, stressing the 

way algorithmic pricing raises efficiency, revenue, and 

service offer. 

3.1 Analysis of Ride-Sharing Pricing Model 

The analysis of ride-sharing price systems targets 

dynamic prices, surge multipliers, and price-matching 

algorithms for the purpose of optimizing fares in real-

time demand and supply. These maximize efficiency 

by targeting driver availability and customer 

affordability. Game-theoretic solutions also guarantee 

balance, optimizing revenue while ensuring service 

reliability.  

3.1.1 Dynamic Pricing and Surge Pricing Algorithm 

The use of dynamic prices in sharing rides, exemplified 

by Uber’s surge pricing, modifies fares according to 

real-time demand and supply fluctuations. When 

demand surpasses the number of available automobile 

drivers, surge multipliers elevate rates to incentivize 
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additional drivers to participate. Dynamic 

programming utilizes steady-state models to forecast 

short-term variations in supply, demand, and price 

elasticity. 

The steady-state travel throughput, defined as the 

mean number of journeys performed per unit of time, 

is represented by Y. We subsequently possess the flow 

balance equation. 

𝐿 =  𝑂⏞
𝑜𝑝𝑒𝑛

+  𝜂. 𝑌⏞
𝑒𝑛 𝑟𝑜𝑢𝑡𝑒

+   𝑇. 𝑌⏞
𝑜𝑛−𝑡𝑟𝑖𝑝

     (1) 

Let O signify the quantity of open drivers, 𝜂 indicate 

the en route duration, 𝜂 ⋅ Y denote the count of en 

route drivers, and T ⋅ Y represent the number of drivers 

currently on trip. The travel time 𝜂 is contingent upon 

the quantity of available drivers: a reduced quantity of 

available drivers O results in an increased travel 

duration. 

When the driver supply is low, longer en route times 

reduce efficiency and earnings, causing some drivers to 

leave, further worsening availability. Drivers also 

make strategic decisions on when and where to operate 

based on surge pricing, making DP essential for 

balancing the platform’s efficiency and earnings. 

3.1.2  Price Matching Algorithm 

Ride-sharing services can offer non-shared rides (e.g., 

UberX) or shared rides (e.g., Uber Pool). In non-shared 

trips, drivers transition between three phases: open 

(awaiting dispatch), en route (driving to the pickup 

location), and on-trip (transporting riders to their 

destination). 

In the uncomplicated scenario of a non-shared ride, 

drivers utilizing the platform progress through three 

successive states: “open”—awaiting dispatch, “en 

route”—traveling toward the pickup location, and “on-

trip”—transporting riders to their final destination, as 

seen here.  

  ··· → open → en route → on-trip → open → ···  

Matching requests to drivers can be done through the 

first-dispatch protocol, where the nearest available 

driver is assigned immediately. Alternatively, batching 

consolidates multiple requests before dispatching, 

improving efficiency, and reducing rider wait times 

compared to the first-dispatch approach. 

The comprehensive mathematical description is as 

follows. Let N and M represent each set of rider node 

and driver nodes inside the same batch, accordingly. 

The value of the binary decision variable 𝑥𝑖𝑗 assigns a 

value of 1 if rider i is paired with driver j, and 0 if not.. 

The compensation for pairing rider i with driver j is 

represented by 𝑟𝑖𝑗. The matching problem is expressed 

as the following integer program. 
 𝑚𝑎𝑥

𝑥
∑ ∑ 𝑟𝑖𝑗𝑥𝑖𝑗𝑗𝜖𝑀𝑖𝜖𝑁                (2) 

𝑠. 𝑡 ∑ 𝑥𝑖𝑗 ≤ 1,𝑗         ∀𝑖 ∈ 𝑁,    (3) 

∑ 𝑥𝑖𝑗𝑗   ≤ 1,       ∀𝑗 ∈ 𝑀,     (4) 

𝑥𝑖𝑗  ∈ {0,1},      ∀𝑖 ∈ 𝑁,         ∀𝑗 ∈ 𝑀.   (5) 

The described matching algorithms are myopic, as they 

do not account for future demand or supply. While 

forward-looking algorithm offer theoretical benefits, 

they require complex input calibration, making 

implementation challenging. Modern algorithms rely 

on supplementary forecasts, including variable supply 

and demand arrival rates, to enhance matching 

performance. 

3.1.3 Market Equilibrium 

Market equilibrium in ride-sharing occurs when ride 

requests match fulfilled trips in a steady-state system, 

modeled using a fluid approximation where riders and 

drivers are matched in fractional quantities. 

A game-theoretic approach is used to analyze how 

pricing algorithms influence market equilibrium. 

Platforms like Uber and Lyft use surge pricing to 

balance supply and demand, affecting driver 

participation and rider willingness to pay. Treating 

pricing as a strategic player, the analysis examines 

Nash equilibrium conditions where drivers and riders 

optimize their payoffs. This provides insights into how 

algorithm-driven pricing ensures efficiency, 

maximizes revenue, and maintains service availability 

while considering driver incentives and rider demand 

elasticity. 
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3.2  Types of Ride-Sharing Pricing model 

The ride-share platform utilizes price and 

compensation to balance supply and demand. We have 

constructed a framework to determine the platform's 

ideal pricing approach. There are various models, 

including uniform price, differential customer pricing, 

and differential driver pricing. 

3.2.1 Uniform pricing model (UP) 

They first outline the standard method within the 

uniform price concept. The total number of consumers 

in the marketplace is λ. Let 𝑣𝑇 = v and 𝑣𝑅= ℎ𝑣𝑇 indicate 

the consumer's assessment The combination of the 

transportation provider and the ride-share service, 

here he represents the extent to which clients prefer 

the service that provides rides over the taxi service. 

 
Fig.1 Uniform Pricing Model 

 

If customers select alternative travel alternatives, they 

must prepare to pay price pk. To simplify the 

discussion, they assign a consumer value and expense 

of zero to public transit due to its poor quality and cost 

relative to ride-sharing and taxi services. As a result, 

customer utility is  

𝑈𝑘 = 𝑣𝑘  – 𝑝𝑘       k = R, T, P.  

When the utility derived from selecting the ride-

sharing service exceeds those of the taxi service and is 

greater than zero, customers are going to register and 

submit queries to the platform for rides. 

3.2.2 Differential customer pricing model (DCP) 

A platform frequently employs a differential customer 

pricing approach through segmenting clients and 

imposing varied prices to acquire a larger clientele. For 

instance, Uber frequently provides discounts to those 

who are new or those with infrequent usage.  

The platform provides value to a customer that not 

engage with this value, v ∈ [0, ˆ v) a discount coupon c 

to incentivize the client to select the platform as their 

choice. The platform has a pair pricing categories: 

firstly, is the regular price 𝑝𝑅 while the other is the 

discounted price 𝑝𝑅− c. 

For clients who receive the regular price 𝑝𝑅 (the 

discounted price 𝑝𝑅−c), we denote rϕ (−rϕ) as the 

utility gain (loss) that results from the platform’s 

differential pricing. r denotes the fairness concerns of 

customers. ϕ represents the price difference, which is 

𝑝𝑅− (𝑝𝑅 −c) = c. Therefore, customer utility is 

𝑈𝑅 =  {
𝑣𝑅 − 𝑝𝑅 − 𝑟𝜑,                    𝑣 ∈ [𝑣, 1]        

 𝑣𝑅 − 𝑝𝑅 − 𝑐 + 𝑟𝜑,             𝑣 ∈ [𝑜, 𝑣]       
             

  

 
Fig.2 Differential customer pricing model 

 

3.2.3 Differential driver pricing model (DDP) 

As two-sided markets, ride-sharing platforms can 

implement variable price for both clients and 

operators. The driver's usefulness is rendered 

ineffective because δ ∈ [ˆ δ, 1]. Consequently, the 

scheme offer incentives to motorists who are not 

currently participating, with the goal to incentivize 

their enrollment.  

In summary, drivers may get two distinct wages: the 

standard rate w and the supported wage w + s. Drivers 

who receive a standard wage may nevertheless opt to 

participate due to their earnings reference-dependent 
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choices, signifying a daily income objective they aspire 

to achieve. 

As drivers are concerned about fairness in a manner 

akin to our reflection of client problems, we signify e 

ψ (−e ψ) represents the utility gain (loss) arising from 

the platform's price differential, where e denotes 

drivers' worries regarding equity. ψ represents the 

wage difference, which is (w + s) − w = s. Driver utility 

is w − δ – e ψ when δ ∈ [0, ˆ δ) and w +s − δ + e ψ when 

δ ∈ [ˆ δ,1]. The aggregate number of registered drivers 

is KR = K (w – e ψ) + K (w + s+ e ψ −w) = K(w + s). 

 
Fig. 3 Differential driver pricing model (D) 

 

RESULT AND EVALUATION 

The results indicate that dynamic pricing effectively 

adjusts fares with rising demand, showing exponential 

price growth during peak periods to balance supply 

and demand. Dynamic waiting-time surge multipliers 

maintain market stability better than static pricing 

models. Additionally, welfare peaks at a surge 

multiplier of 1.5, confirming that dynamic waiting 

strategies improve overall system efficiency. 

4.1 Dynamic Pricing and Demand Relationship 

This discussion explores how the fare price changes 

with ride demand. The diagram illustrates how levels 

of demand relate to fare prices under a dynamic fare 

pricing model. At a demand level of 1, which is low, 

the fare price is approximately $4. The fare is 

approximately $10 at a demand level of 5, which is the 

equilibrium fare when demand equals supply. Over 

this, prices rose sharply to $20-$27 at high demand 

levels (8-10). This is characteristic of surge pricing, 

which incentivizes more drivers to join during high-

demand periods. The trend is one of non-linear price 

escalation, i.e., prices rise exponentially with demand, 

to ensure efficient market balance and driver 

availability. 

 
Fig. 4 Dynamic Pricing: Fare vs. Demand 

 

4.2 Optimal Surge Multipliers Across Different Pricing 

Strategies 

The graph is a contrast between theoretical surge 

multipliers and differing 24-hour pricing schemes. 

Dynamic waiting-time-based surge pricing (blue line) 

ranges from 0.2 to 0.6, signifying that it responds to 

supply and demand changes. Dynamic pricing (red 

line) without waiting time has peaks because, at hour 

9, the price level is 1.2, signaling periods of high 

demand. Static waiting pricing (green line) is flat at 1.0, 

or no change. Waiting static pricing (purple line) is low 

at around 0.2 to 0.3. This type of trend guarantees that 

dynamic pricing is less sensitive to demand changes, 

enabling the market to remain well-balanced. 
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Fig. 5 Optimal Surge Multipliers across Pricing 

Strategies 

4.3 Impact of Surge Multipliers on Welfare 

The graph shows the impact of surge multipliers on 

welfare, both in dynamic waiting (blue line) and non-

dynamic waiting (red line). Welfare goes up with surge 

multipliers, to a peak at 1.5, where dynamic waiting is 

250 units and non-dynamic waiting is 240 units. 

Welfare goes down after this. The findings point out 

that dynamic waiting enhances overall welfare, such 

that efficiency in demand-supply balance is enhanced. 

 
Fig. 6 Impact of Surge Multipliers on Welfare 

 

 

CONCLUSION 

The present study examined the role of dynamic 

pricing, surge pricing, and game-theoretic methods in 

ride-sharing platforms like Uber and Lyft. The study 

confirmed that pricing algorithms, particularly surge 

multipliers, function well to balance supply and 

demand by encouraging driver participation and 

regulating customer demand. The findings confirm 

that waiting time dynamic pricing is more efficient, as 

seen in welfare maximization trends. In addition, 

market equilibrium models show that ride-sharing 

platforms optimize driver assignments and pricing 

controls to guarantee service reliability and 

profitability. 

The comparison of various pricing models— UP, DCP, 

and DDP —also favors the platform sustainability 

effect of strategic pricing. While simplicity is 

guaranteed with uniform pricing, differential pricing 

models induce greater usage by customers and driver 

loyalty. However, problems like collusion and price 

fairness among drivers are persistent issues. Theory 

and empirical studies in the future can be directed 

towards examining regulatory response, cross-

platform interaction, and ethical issues in designing a 

sustainable and fair ride-sharing market. 
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