LASIS-Assisted Copper Nanoparticle Synthesis and Characterization, along with UV-Visible Spectroscopy
DOI:
https://doi.org/10.32628/IJSRSET24114100Keywords:
Nanoparticles, Copper Nanoparticles, LASIS, Chemical Reduction MethodAbstract
This study investigates the creation of copper nanoparticles (CuNPs) using chemical reduction and laser ablation in liquid (LASIS). UV-visible spectroscopy is used to examine the optical characteristics of the nanoparticles created by these techniques. The purpose of the study is to compare the stability, efficacy, and particle size of CuNPs produced using different techniques. When comparing the LASIS method to the chemical reduction process, Transmission Electron Microscopy (TEM) examination revealed that the former produced smaller and more uniform nanoparticles. This work demonstrates the effectiveness of both synthesis techniques, with LASIS clearly outperforming the other in the production of superior CuNPs with more control over particle size and dispersion. A thorough explanation of the chemical reduction method and LASIS used in the synthesis of copper nanoparticles is provided, and UV-visible spectroscopy is used to characterize the resulting particles.
Downloads
References
H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De, A. Misra, Green synthesis of silver nanoparticles using latex of Jatropha curcas, Colloids and surfaces A: Physicochemical and engineering aspects, 339 (2009) 134-139. DOI: https://doi.org/10.1016/j.colsurfa.2009.02.008
M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical reviews, 104 (2004) 293-346. DOI: https://doi.org/10.1021/cr030698+
T. Kawai, D.J. Neivandt, P.B. Davies, Sum frequency generation on surfactant-coated gold nanoparticles, Journal of the American Chemical Society, 122 (2000) 12031-12032. DOI: https://doi.org/10.1021/ja002785e
R. Lévy, N.T. Thanh, R.C. Doty, I. Hussain, R.J. Nichols, D.J. Schiffrin, M. Brust, D.G. Fernig, Rational and combinatorial design of peptide capping ligands for gold nanoparticles, Journal of the American Chemical Society, 126 (2004) 10076-10084. DOI: https://doi.org/10.1021/ja0487269
A.B. Lowe, B.S. Sumerlin, M.S. Donovan, C.L. McCormick, Facile preparation of transition metal nanoparticles stabilized by well-defined (co) polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization, Journal of the American Chemical Society, 124 (2002) 11562-11563. DOI: https://doi.org/10.1021/ja020556h
A. Maestro, E. Guzmán, E. Santini, F. Ravera, L. Liggieri, F. Ortega, R.G. Rubio, Wettability of silica nanoparticle–surfactant nanocomposite interfacial layers, Soft Matter, 8 (2012) 837-843. DOI: https://doi.org/10.1039/C1SM06421E
M. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment, Environment international, 32 (2006) 967-976. DOI: https://doi.org/10.1016/j.envint.2006.06.014
P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles, Journal of the American Chemical Society, 125 (2003) 13940-13941. DOI: https://doi.org/10.1021/ja029267j
N. Wangoo, K. Bhasin, S. Mehta, C.R. Suri, Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies, Journal of colloid and interface science, 323 (2008) 247-254. DOI: https://doi.org/10.1016/j.jcis.2008.04.043
Chaitanya Patel, Vishal Pillai, Ajay Desai, Keyur Bhatt, “Synthesis of Copper Nanoparticles using LASIS and Chemical Reduction Technique and its Characterization by UV-Visible Spectroscopy”, Journal of Nanotechnology and Its Application in Engineering Volume 3 Issue , 29-38 © ManTech Publications 2018.
M. Ben-Sasson, X. Lu, S. Nejati, H. Jaramillo, M. Elimelech, In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles, Desalination, 388 (2016) 1-8. DOI: https://doi.org/10.1016/j.desal.2016.03.005
J.A. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied physics letters, 78 (2001) 718-720. DOI: https://doi.org/10.1063/1.1341218
Y. Guo, F. Cao, X. Lei, L. Mang, S. Cheng, J. Song, Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions, Nanoscale, 8 (2016) 4852-4863. DOI: https://doi.org/10.1039/C6NR00145A
A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles, International Nano Letters, 6 (2016) 21-26. DOI: https://doi.org/10.1007/s40089-015-0163-6
Z. Qing, X. He, D. He, K. Wang, F. Xu, T. Qing, X. Yang, Poly (thymine)‐Templated Selective Formation of Fluorescent Copper Nanoparticles, Angewandte Chemie International Edition, 52 (2013) 9719-9722. DOI: https://doi.org/10.1002/anie.201304631
J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Synthesis and antimicrobial activity of copper nanoparticles, Materials letters, 71 (2012) 114- 116. DOI: https://doi.org/10.1016/j.matlet.2011.12.055
K. Y. Yoon, J.H. Byeon, J.-H. Park, J. Hwang, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Science of the Total Environment, 373 (2007) 572-575. DOI: https://doi.org/10.1016/j.scitotenv.2006.11.007
H. Huang, F. Yan, Y. Kek, C. Chew, G. Xu, W. Ji, P. Oh, S. Tang, Synthesis, characterization, and nonlinear optical properties of copper nanoparticles, Langmuir, 13 (1997) 172-175. DOI: https://doi.org/10.1021/la9605495
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.