Comparative Optical Behaviour of High and Low Index Cladding Contrast Bragg Fiber
DOI:
https://doi.org/10.32628/IJSRSET2411452Keywords:
Bragg Fiber, Transfer Matrix Method, Photonic Band Gap, High Contrast, Design WavelengthAbstract
We investigate and evaluate the optical performance of high- and low-RI cladding contrast Bragg fiber for two design wavelengths: 1550 nm (in the near-infrared region) and 632.8 nm (in the visible range). In order to establish a connection between the incoming and outgoing light waves using the transfer matrix technique, the boundary matching approach is used. Less periodic cladding layers are needed to create a perfect photonic band gap (PBG), and the measured PBG in high RI cladding contrast Bragg fiber (HRCCBF) are rather large. Both low refractive index and high refractive index spectra of PBG Cladding contrast Bragg fiber (LRCCBF) performance is very sensitive to the incoming light's optical path, or angle of incidence. One way to find out how sensitive the Bragg fiber is for sensing applications is to measure the PBG's thickness or spectral shift. As the design wavelength increases, the spectral bandwidth of PBG with core RI changes, and HRCCBF seems to be quite sensitive to this shift. When taking the Left Band Edge (LBE) and the Right Band Edge (RBE) into account, LRCCBF is much more sensitive than HRCCBF, making it the better choice for sensing applications.
Downloads
References
P. Yeh, A. Yariv, E. Marom: Theory of Bragg fiber. Journal of optical society of America 68, 1196-1201, 1978. DOI: https://doi.org/10.1364/JOSA.68.001196
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. Russell, St. J., Roberts, P. J., Allan, D. C.: Single-mode photonic band gap guidance of light in air. Science 289, 415-419, 2000.
A. Argyros, : Guided modes and loss in Bragg fibers. Opt. Exp. 10, 1411–1417, 2002. DOI: https://doi.org/10.1364/OE.10.001411
S. Dasgupta, B. P. Pal, M. R. Shenoy: Design of dispersion compensating Bragg fiber with an ultrahigh figure of merit. Opt. Lett. 30, 1917–1919, 2005. DOI: https://doi.org/10.1364/OL.30.001917
J. Sakai, : Optical loss estimation in a Bragg fiber. J. Opt. Soc. Am. B 24, 763-772, 2007. DOI: https://doi.org/10.1364/JOSAB.24.000763
S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, Y. Fink: Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express 9, 748–779, 2001. DOI: https://doi.org/10.1364/OE.9.000748
N. K. Chourasia, A. Srivastava, V. Kumar, R. K. Chourasia, optimizing temperature-dependent molar volume fraction of biodiesel fuel in a pseudo-binary mixture through Bragg fiber waveguide sensor having defect layer, Fuel, 293, 120489, 2021, https://doi.org/10.1016/j.fuel.2021.120489. DOI: https://doi.org/10.1016/j.fuel.2021.120489
N. K. Chourasia, N. Bihari, R. K. Chourasia, An optofluidic Bragg fiber sensor for estimating adulterants in a temperature-dependent molar fraction of hydrated mono-alcohol fuels, 8(9), e10532, 2022, https://doi.org/10.1016/j.heliyon.2022.e10532. DOI: https://doi.org/10.1016/j.heliyon.2022.e10532
R. K. Chourasia, N. K. Chourasia, A. Srivastava, N. Bihari, Photonic Nanostructured Bragg Fuel Adulteration Sensor, Photonic Materials: Recent Advances and Emerging Applications. Singapore: Bentham Science Publishers, 237, 2023. DOI: https://doi.org/10.2174/9789815049756123010015
N. K. Chourasia, A. Srivastava, V. Kumar, R. K. Chourasia, Doubly electrically tuned cylindrical Bragg fiber waveguide inline optical filter for multiwavelength LASER applications, Materials Today Communications, 25, 101620, 2020 https://doi.org/10.1016/j.mtcomm.2020.101620. DOI: https://doi.org/10.1016/j.mtcomm.2020.101620
S. Golmohammadi, Y. Rouhani, K. Abbasian, A. Rostami: Photonic bandgaps in quasiperiodic multilayer using fourier transform of the refractive index profile. PIER B 5, 133-152, 2008.
L. González-García, S. Colodrero, H. Míguez, A. R. González-Elipe: Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency. Opt. Express 23, A1642-A1650, 2015. DOI: https://doi.org/10.1364/OE.23.0A1642
K. J. Rowland, V. S. Afshar, A. Stolyarov, Y. Fink, T. M. Monro: Bragg waveguides with low-index liquid cores. Optics Express 20, 48-62, 2011. DOI: https://doi.org/10.1364/OE.20.000048
Q. Hang, M. Skorobogatiy: Resonant bio-and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers. Sensors and Actuators B 161, 261-268, 2012. DOI: https://doi.org/10.1016/j.snb.2011.10.028
M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, G. S. Sokolovski: Bragg reflectors for cylindrical waves. Journal of Modern Optics 46, 875-890, 1999. DOI: https://doi.org/10.1080/095003499149593
A. H. Cherin: An introduction to optical fibers, Mc Graw-Hill International, Tokyo, 1983.
M. Born, E. Wolf: Principles of Optics. Cambridge, London, 1999. DOI: https://doi.org/10.1017/CBO9781139644181
R. K. Chourasia, N. K. Chourasia, N. Bihari, Optical Properties of Hollow-Core Bragg Fiber Waveguides, Photonic Materials: Recent Advances and Emerging Applications. Singapore: Bentham Science Publishers, 214, 2023. DOI: https://doi.org/10.2174/9789815049756123010014
N. Bihari et al., H-Polarised EM-Wave Transport in Polymeric-Chalcogenide Columnar Photonic Materials, 2023 J. Phys.: Conf. Ser. 2426 012009, https://doi.org/10.1088/1742-6596/2426/1/012009. DOI: https://doi.org/10.1088/1742-6596/2426/1/012009
N. Bihari, N. K. Chourasia, R. K. Chourasia, Exploring optical properties in cylindrical polymeric-chalcogenides photonic materials, Materials Today: Proceedings, Volume 67, Part 5, 2022, Pages 625-631, https://doi.org/10.1016/j.matpr.2022.06.093. DOI: https://doi.org/10.1016/j.matpr.2022.06.093
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.