Spatial Analysis of the Cooling Effects of Green and Blue Infrastructure Using Remote Sensing: A Case Study in Amasya (Türkiye)

Authors

  • Meltem GÜNEŞ TİGEN Department of Landscape Architecture, Faculty of Fine Arts, Design and Architecture, Tekirdag Namik Kemal University, Tekirdag, 59030, Turkiye Author

DOI:

https://doi.org/10.32628/IJSRSET25122141

Keywords:

Urban heat island, green infrastructure, blue infrastructure, remote sensing, urban microclimate, thermal comfort, NDVI

Abstract

The urban heat island (UHI) effect is a major environmental challenge driven by rising surface temperatures due to urbanization. This study analyzes the spatial distribution of UHI in Amasya’s city center and evaluates the temperature-regulating functions of green and blue infrastructure. Land Surface Temperature (LST) data derived from Landsat 9 satellite imagery were integrated with NDVI (Normalized Difference Vegetation Index) and buffer analyses of water bodies to examine spatial thermal variations. The results reveal an average surface temperature of 31.93°C in the urban core, compared to 30.78°C in rural areas, highlighting an urban-rural temperature disparity exceeding 1°C. Although rural zones are generally cooler, agricultural lands with sparse vegetation exhibit peak temperatures of up to 42.57°C. The cooling effect of green infrastructure is evident, as densely vegetated regions experience a decline in surface temperatures, averaging 23.64°C. Likewise, blue infrastructure plays a significant role in thermal regulation, as surface temperatures near the Yeşilırmak River are approximately 3°C lower. Analysis of a 40-meter buffer zone along the river, considering its mean width, indicates an average LST of 28.82°C. The findings emphasize the crucial role of green and blue infrastructure in alleviating the UHI effect and highlight the necessity of integrating these elements into sustainable urban planning strategies.

Downloads

Download data is not yet available.

References

Anandababu D., Puruhothaman B. M., Babu S. S., (2018), Estimation of land surface temperature using landsat 8 data, International Journal of Advance Research, Ideas And ınnovations ın Technology, 4(2), 177- 186.

Avdan U., Javanovska G., (2016), Algorithm for automated mapping of land surface temperature using landsat 8 satellite data, Journal of Sensors, 2016, 1-8.

Balany, F., Ng, A. W. M., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green infrastructure as an urban heat island mitigation strategy—A review. Water, 12(3577). https://doi.org/10.3390/w12123577

Balçık F. B., Ergene E. M., (2017), Yer yüzey sıcaklığının termal uzaktan algılama verileri ile belirlenmesi: İstanbul örneği, Türkiye. Ulusal Fotogrametri ve Uzaktan Algılama Birliği 9. Teknik Sempozyumu Bildiri Özetleri Kitabı içinde (Turgut B. vd., Ed), Afyonkarahisar, Türkiye, ss 21.

Benedict, M. A., & McMahon, E. T. (2006). Green infrastructure: Linking landscapes and communities. Island Press.

Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [CrossRef]

Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96(4), 224–231. https://doi.org/10.1016/j.landurbplan.2010.03.008

Chanpichaigosol, N., Chaichana, C., & Rinchumphu, D. (2025). Urban heat island classification through alternative normalized difference vegetation index. Global Journal of Environmental Science and Management, 11(1), 57-76. https://doi.org/10.22034/gjesm.2025.01.04

Chen X. L., Zhao H. M., Li P. X., Yin Z. Y., (2006), Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes, Remote Sensing of Environment, 104(2), 133-146.

Clinton, N., & Gong, P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sensing of Environment, 134, 294-304.

Çağlak, S. (2017). Samsun’un Biyoklimatik Konfor Şartlarının İncelenmesi ve Şehirleşmenin Biyoklimatik Konfor Şartlarına Etkisi (Tez No. 475568) [Yüksek lisans tezi, Ondokuz Mayıs Üniversitesi] YÖK Ulusal Tez Merkezi.

Çağlak, S. (2022). Amasya kentinin biyoklimatik konfor koşullarının mekânsal dağılımı ve gelecek projeksiyonları. Mavi Atlas, 10(1), 182-197. https://doi.org/10.18795/gumusmaviatlas.1077568

Du H, Cai W, Xu Y, Wang Z, Wang Y, Cai Y (2017) Quantifying the Cool Island Effects of Urban Green Spaces Using RS Data. Urban Forestry and Urban Greening, 27: 24-31.

Erener A., Sarp G., (2018), Spatiotemporal distribution of ındustrial regions and impact on LST in the case of Kocaeli, FIG Congress 2018 Proceedings, İstanbul, Türkiye, https://www.fig.net/resources/proceedings/fig_proceedings/fig2018/papers/ts07c/ TS07C_erener_sarp_9639.pdf, [Erişim 08 Ekim 2019].

European Commission. (2019). Green and blue infrastructure and ecosystem services. https://ec.europa.eu/environment/nature/ecosystems/index_en.htm

European Environment Agency (EEA). (2011). Green infrastructure and territorial cohesion: The concept of green infrastructure and its integration into policies using monitoring systems. EEA Technical Report No 18/2011. https://www.eea.europa.eu/publications/green-infrastructure-and-territorial-cohesion

Gerçek, D., & Türkmenoğlu Bayraktar, N. (2014, Ekim 14-17). Kentsel ısı adası etkisinin uzaktan algılama ile tespiti ve değerlendirilmesi: İzmit kenti örneği. V. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2014), İstanbul.

Gönenç, A., 2019, Uydu Görüntüleri Kullanılarak NDVI ve RVI Bitki Örtüsü İndekslerinin Karşılaştırılması, Yüksek Lisans Tezi, D.Ü, Fen Bilimleri Enstitüsü, Diyarbakır, 22-56.

Hansen, R. and Pauleit, S. 2014. From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. Ambio, p. 516–529.

He, Y., Pu, N., Zhang, X., Wu, C., & Tang, W. (2025). Long-term spatiotemporal heterogeneity and influencing factors of remotely sensed regional heat island effect in the Central Yunnan Urban Agglomeration. Land, 14(232). https://doi.org/10.3390/land14020232

IPCC. (2022). İklim Değişikliğine Uyum Stratejisi ve Eylem Planı (2024-2030). Çevre, Şehircilik ve İklim Değişikliği Bakanlığı.

İmar ve Kadastro Genel Müdürlüğü. (2014). Türkiye İl ve İlçe Yüzölçümleri. https://www.imarkadastro.com/userfiles/file/Dokuman/il_ilce_alanlari.pdf

Kabisch, N., Korn, H., Stadler, J., & Bonn, A. (2017). Nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice. Springer Nature.

Kumar, P., Husain, A., Singh, R. B., & Kumar, M. (2018). Impact of land cover change on land surface temperature: A case study of Spiti Valley. Journal of Mountain Science, 15(8), 1658-1670. https://doi.org/10.1007/s11629-018-4902-9

Li Y, Xia M, Ma Q, Zhou R, Liu D, Huang L (2022) Identifying the Influencing Factors of Cooling Effect of Urban BI Using The Geodetector Model. Remote Sensing 14:21.

Li Z. L., Tang B. H., Wu H., Ren H., Yan G., Wan Z., Trigo I. F., Sobrino J. A., (2013), Satellite-derived land surface temperature: current status and perspectives, Remote Sensing of Environment, 131, 14-37.

MacLachlan A, Biggs E, Roberts G, Boruff B (2021) Sustainable City Planning: A Data-Driven Approach for Mitigating Urban Heat. Front. Built Environ. 6:519599.

Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., Parastatidis, D., & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European functional urban areas. Sustainable Cities and Society, 77, 103564. https://doi.org/10.1016/j.scs.2021.103564

MGM (2025) Meteoroloji Genel Müdürlüğü istatistikleri. İl ve İlçeler İstatistikleri: Amasya. (Erişim tarihi 10/12/2024).

Ndossi M. I., Avdan U., (2016), Açık kaynak kod teknoloji kullanılarak yer yüzey sıcaklığının belirlenmesinde yeni bir eklentinin geliştirilmesi, 6.Uzaktan Algılma-CBS Sempozyumu Bildiriler Kitabı içinde, (Maktav D., Berberoğlu S., Ed.), Adana, Türkiye, ss 1135-1141.

Oke T. R., (1982), The energetic basis of the urban heat island, Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24.4

Okumuş, D. E. (2022). Kentsel mikro iklimin iyileştirilmesine yönelik kent dokularında ısı adası etki değerlendirme ve azaltım stratejileri geliştirme modeli: İstanbul örneği. İstanbul Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü.

Pramanik S, Punia M (2019) Assessment of Green Space Cooling Effects in Dense Urban Landscape: A Case Study Delhi, India. Modeling Earth Systems and Environment 5:3, 867-884.

Prata A. J., Caselles C. C., Sobrino J. A., Ottle C., (2009), Thermal remote sensing of land surface temperature from satellites: current status and future prospects, Remote Sensing Reviews, 12, 175-224. DOI: 10.1080/02757259509532285

Quattrochi, D.A. and Luvall, J.C. (1999) Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications. Landscape Ecology, 14, 577-598.

Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment, 512, 582–598. https://doi.org/10.1016/j.scitotenv.2015.01.060

Santamouris, M., Kolokotsa, D., & Dandou, A. (2017). Passive cooling strategies for mitigating urban heat island effects. Energy and Buildings, 153, 36–61. https://doi.org/10.1016/j.enbuild.2017.07.086

Sun, R., & Chen, L. (2012). How can urban water bodies be designed for climate adaptation? Landscape and Urban Planning, 105(1), 27–33. https://doi.org/10.1016/j.landurbplan.2011.11.018

Sun, Y., Gao, C., Li, J., Gao, M., & Ma, R. (2021). Assessing the cooling efficiency of urban parks using data envelopment analysis and remote sensing data. Theoretical and Applied Climatology, 145, 903–916. https://doi.org/10.1007/s00704-021-03665-2

T.C. Kültür ve Turizm Bakanlığı. (2025). Amasya'nın Akarsuları. https://amasya.ktb.gov.tr/tr-59468/akarsular.html

Taha, H. (1997). Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25(2), 99–103. https://doi.org/10.1016/S0378-7788(96)00999-1

U.S. Geological Survey (USGS). (2023). Landsat Normalized Difference Vegetation Index (NDVI). Retrieved from https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index

Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

Wang, X., Dallimer, M., Scott, C. E., Shi, W., & Gao, J. (2021). Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Science of the Total Environment, 770, 145211. https://doi.org/10.1016/j.scitotenv.2021.145211

Weng Q., Lu D., Schubring J., (2004), Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies, Remote Sensing of Environment, 89(4), 467-483.

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335–344. https://doi.org/10.1016/j.isprsjprs.2009.03.007

World Meteorological Organization. (2024). WMO Global Annual to Decadal Climate Update 2024-2028. World Meteorological Organization. Retrieved from https://wmo.int

Yılmaz E., (2015), Landsat görüntüleri ile Adana yüzey ısı adası, Coğrafi Bilimler Dergisi, 13(2), 115-138

Yılmaz, Y. (2020). Amasya Şehri’nin iklim yapısı ve özellikleri. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 24(Aralık Özel Sayı), 167-186

Yüksel Ü. D., Yılmaz O., (2008), Ankara kentinde kentsel ısı adası etkisinin yaz aylarında uzaktan algılama ve meteorolojik gözlemlere dayalı olarak saptanması ve değerlendirilmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 23(4), 937-952.

Yüksel, A. T., & Coşkun Hepcan, Ç. (2023). Kentsel yüzey sıcaklığı ve mavi-yeşil altyapı ilişkisi: Karşıyaka örneği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 20(1), 91-98. https://doi.org/10.25308/aduziraat.1214763

Zeybek, H. İ. (1998). Amasya ovası ve yakın çevresinin fiziki coğrafyası (Tez No. 072091) [Doktora tezi, Ondokuz Mayıs Üniversitesi]. YÖK Ulusal Tez Merkezi.

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. A. (2019). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1), 48. https://doi.org/10.3390/rs11010048

Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2018, 11, 48. [CrossRef]

Zhou,W.; Cao, F. Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecol. Indic. 2020, 109, 105778. [CrossRef]

Zhao, T.; Fong, K.F. Characterization of di

erent heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot–humid climate (Part I): Measurement and modelling. Sustain. Cities Soc. 2017, 32, 523–531. [CrossRef]

Zhang Y, Liu Y, Zhang Y, Liu Y, Zhang G, Chen Y (2018) On The Spatial Relationship Between Ecosystem Services and Urbanization: A Case Study in Wuhan, China. Science of The Total Environment 637:638 780-790.

Downloads

Published

17-03-2025

Issue

Section

Research Articles

How to Cite

[1]
Meltem GÜNEŞ TİGEN, “Spatial Analysis of the Cooling Effects of Green and Blue Infrastructure Using Remote Sensing: A Case Study in Amasya (Türkiye)”, Int J Sci Res Sci Eng Technol, vol. 12, no. 2, pp. 166–175, Mar. 2025, doi: 10.32628/IJSRSET25122141.

Similar Articles

1-10 of 70

You may also start an advanced similarity search for this article.