Evolutionary Approaches to Combat Antibiotic Resistance in Microbes
DOI:
https://doi.org/10.32628/IJSRSETKeywords:
Antibiotics Resistance, Nano Therapy, Quorum Sensing, BacteriocinsAbstract
Antibiotics are one of the most important discoveries yet on earth. However, the rise of antibiotic resistance among microorganisms has lowered their potency of treatment for diseases which is now becoming life-threatening to patients. In this context, the present review discusses the reason for the development of resistance among bacteria through their mechanisms and evolutionary approaches to address this issue. Quorum sensing inhibition, bacteriocins, nano therapy, phage therapy, and essential oils have been discussed in the present work.
📊 Article Downloads
References
Ramaswamy, S., & Musser, J. M. (1998). Molecular genetic basis of antimicrobial agent resistance inMycobacterium tuberculosis: 1998 update. Tubercle and Lung Disease, 79(1), 3–29. https://doi.org/10.1054/TULD.1998.0002
Telenti, A., Imboden, P., Marchesi, F., Lowrie, D., Cole, S., Colston, M. J., Matter, L., Schopfer, K., &Bodmer, T. (1993). Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet (London, England), 341(8846), 647–650. https://doi.org/10.1016/01406736(93)90417-f
Calvori, C., Frontali, L., Leoni, L., &Tecce, G. (1965). Effect of rifamycin on protein synthesis. Nature, 207(995), 417–418. https://doi.org/10.1038/207417a0
Ambler, R. P., Coulson, A. F., Frère, J. M., Ghuysen, J. M., Joris, B., Forsman, M., Levesque, R. C., Tiraby, G., &Waley, S. G. (1991). A standard numbering scheme for the class A beta-lactamases. The Biochemical Journal, 276 ( Pt 1)(Pt 1), 269–270. https://doi.org/10.1042/bj2760269
Zervos, M. J., Kauffman, C. A., Therasse, P. M., Bergman, A. G., Mikesell, T. S., & Schaberg, D. R. (1987). Nosocomial infection by gentamicin-resistant Streptococcus faecalis. An epidemiologic study. Annals of Internal Medicine, 106(5), 687–691. https://doi.org/10.7326/0003-4819-106-5-687
Matthew, M. (1979). Plasmid-mediated beta-lactamases of Gram-negative bacteria: properties and distribution. The Journal of Antimicrobial Chemotherapy, 5(4), 349–358. https://doi.org/10.1093/jac/5.4.349
Medeiros, A. A. (1997). beta-Lactamases: quality and resistance. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 3 Suppl 4, S2–S9.
Tornieporth, N. G., Roberts, R. B., John, J., Hafner, A., & Riley, L. W. (1996). Risk factors associated with vancomycin-resistant Enterococcus faecium infection or colonization in 145 matched case patients and control patients. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 23(4), 767–772. https://doi.org/10.1093/clinids/23.4.767
“What Are VRE? Symptoms, Causes, Diagnosis, Treatment, and Prevention.” EverydayHealth.com
Simpson, I. N., Harper, P. B., & O’Callaghan, C. H. (1980). Principal beta-lactamases responsible for resistance to beta-lactam antibiotics in urinary tract infections. Antimicrobial Agents and Chemotherapy, 17(6), 929–936. https://doi.org/10.1128/AAC.17.6.929
Poirel, L., Héritier, C., Tolün, V., & Nordmann, P. (2004). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 48(1), 15–22. https://doi.org/10.1128/AAC.48.1.15-22.2004
Siddiqui, Abdul H., and Janak Koirala. “Methicillin Resistant Staphylococcus Aureus.” PubMed, StatPearls Publishing, 2022, www.ncbi.nlm.nih.gov/books/NBK482221/#:~:text=Based%20on%20the%20antibiotic%20susc eptibilities. Accessed 26 Apr. 2022
Munita, J. M., & Arias, C. A. (2016b). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Shahkarami, F., Rashki, A., &RashkiGhalehnoo, Z. (2014). Microbial Susceptibility and Plasmid Profiles of Methicillin-Resistant Staphylococcus aureus and Methicillin-Susceptible S. aureus. Jundishapur Journal of Microbiology, 7(7), e16984. https://doi.org/10.5812/jjm.16984
David, M. Z., &Daum, R. S. (2010). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23(3), 616–687. https://doi.org/10.1128/CMR.00081-09
Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14
Staphylococcal Skin Infections | DermNet NZ.” Dermnetnz.org, dermnetnz.org/topics/staphylococcal-skin-infection
Carnicer-Pont, D., Bailey, K. A., Mason, B. W., Walker, A. M., Evans, M. R., & Salmon, R. L. (2006). Risk factors for hospital-acquired methicillin-resistant Staphylococcus aureus bacteraemia: a case-control study. Epidemiology and Infection, 134(6), 1167–1173. https://doi.org/10.1017/S0950268806006327
Lee, A. S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., &Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews. Disease Primers, 4, 18033. https://doi.org/10.1038/nrdp.2018.33
Solan, Matthew. “MRSA (Staph) Infection.” Healthline, Healthline Media, 20 Aug. 2012,
“Enterococcus Faecalis: Causes, Symptoms, and Treatments.” Healthline, 2017,
“VRE: Symptoms, Causes, and Treatment.” Healthline, 26 June 2017,
Cetinkaya, Y., Falk, P., &Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clinical Microbiology Reviews, 13(4), 686–707. https://doi.org/10.1128/CMR.13.4.686
Patrick, Charles. “Vancomycin-Resistant Enterococci: VRE Symptoms & Treatment.” MedicineNet, 2018,
Seung, K. J., Keshavjee, S., & Rich, M. L. (2015). Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 5(9), a017863. https://doi.org/10.1101/cshperspect.a017863
WebMD. “Tuberculosis (TB).” WebMD, WebMD, 17 Jan. 2017,
Rath, Linda. “What Are CRE.” WebMD,
“Articles.” Cedars-Sinai, www.cedars-sinai.org/health-library/diseases-and conditions/c/carbapenem-resistant-enterobacteriaceae.html
Queenan, Anne Marie, and Karen Bush. “Carbapenemases: the versatile beta-lactamases.” Clinical microbiology reviews vol. 20,3 (2007): 440-58, table of contents. https://doi.org/10.1128/CMR.00001-07
Marsik, F. J., & Nambiar, S. (2011). Review of carbapenemases and AmpC-beta lactamases. The Pediatric Infectious Disease Journal, 30(12), 1094–1095. https://doi.org/10.1097/INF.0b013e31823c0e47
Kapoor, G., Saigal, S., &Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33(3), 300. https://doi.org/10.4103/joacp.JOACP_349_15
Opal, S.M., & Pop-Vicas, A.E. (2010). Molecular Mechanisms of Antibiotic Resistance in Bacteria.
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. v. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267. https://doi.org/10.1016/j.bbrc.2014.05.090
Choudhury, H. G., Tong, Z., Mathavan, I., Li, Y., Iwata, S., Zirah, S., Rebuffat, S., van Veen, H. W., &Beis, K. (2014). Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9145–9150. https://doi.org/10.1073/pnas.1320506111
Guilfoile, P. G., & Hutchinson, C. R. (1991). A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proceedings of the National Academy of Sciences of the United States of America, 88(19), 8553–8557. https://doi.org/10.1073/pnas.88.19.8553
Du, D., Wang-Kan, X., Neuberger, A., van Veen, H. W., Pos, K. M., Piddock, L. J. v., & Luisi, B. F. (2018). Multidrug efflux pumps: structure, function and regulation. Nature Reviews Microbiology, 16(9), 523–539. https://doi.org/10.1038/s41579-018-0048-6
Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339. https://doi.org/10.1016/S0168-6445(03)00048-2
Pang, Z., Raudonis, R., Glick, B. R., Lin, T.-J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013
Su, C.-C., Yin, L., Kumar, N., Dai, L., Radhakrishnan, A., Bolla, J. R., Lei, H.-T., Chou, T.-H., Delmar, J. A., Rajashankar, K. R., Zhang, Q., Shin, Y.-K., & Yu, E. W. (2017). Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nature Communications, 8(1), 171. https://doi.org/10.1038/s41467-017-00217-z
Chitsaz, M., Booth, L., Blyth, M. T., O’Mara, M. L., & Brown, M. H. (2019). Multidrug Resistance in Neisseria gonorrhoeae: Identification of Functionally Important Residues in the MtrD Efflux Protein. MBio, 10(6). https://doi.org/10.1128/mBio.02277-19
Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., &Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and Drug Resistance, 13, 423–434. https://doi.org/10.2147/IDR.S228089
Neuberger, A., Du, D., & Luisi, B. F. (2018). Structure and mechanism of bacterial tripartite efflux pumps. Research in Microbiology, 169(7–8), 401–413. https://doi.org/10.1016/j.resmic.2018.05.003
Quillin, S. J., Schwartz, K. T., &Leber, J. H. (2011). The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT. Molecular Microbiology, 81(1), 129–142. https://doi.org/10.1111/j.1365-2958.2011.07683.x
Bay, D. C., & Turner, R. J. (2016b). Small Multidrug Resistance Efflux Pumps. In Efflux-Mediated Antimicrobial Resistance in Bacteria (pp. 45–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-39658-3_3
Grinius, L. L., & Goldberg, E. B. (1994). Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. The Journal of Biological Chemistry, 269(47), 29998–30004
Zhao, X., Yu, Z., & Ding, T. (2020). Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030425
Yada, S., Kamalesh, B., Sonwane, S., Guptha, I., & Swetha, R. K. (2015). Quorum sensing inhibition, relevance to periodontics. Journal of International Oral Health : JIOH, 7(1), 67–69.
Gillor, O., Etzion, A., & Riley, M. A. (2008). The dual role of bacteriocins as anti- and probiotics. Applied Microbiology and Biotechnology, 81(4), 591–606. https://doi.org/10.1007/s00253-0081726-5
Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annual Review of Microbiology, 56, 117–137. https://doi.org/10.1146/annurev.micro.56.012302.161024
Edmundson, M., Thanh, N. T., & Song, B. (2013). Nanoparticles based stem cell tracking in regenerative medicine. Theranostics, 3(8), 573–582. https://doi.org/10.7150/thno.5477
Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces, 8(7), 4963–4976. https://doi.org/10.1021/acsami.6b00161
Gurunathan, S., Han, J. W., Dayem, A. A., Eppakayala, V., & Kim, J.-H. (2012). Oxidative stressmediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 7, 5901–5914. https://doi.org/10.2147/IJN.S37397
Nagy, A., Harrison, A., Sabbani, S., Munson, R. S., Dutta, P. K., & Waldman, W. J. (2011). Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. International Journal of Nanomedicine, 6, 1833–1852. https://doi.org/10.2147/IJN.S24019
Leung, Y. H., Ng, A. M. C., Xu, X., Shen, Z., Gethings, L. A., Wong, M. T., Chan, C. M. N., Guo, M. Y., Ng, Y. H., Djurišić, A. B., Lee, P. K. H., Chan, W. K., Yu, L. H., Phillips, D. L., Ma, A. P. Y., & Leung, F. C. C. (2014). Mechanisms of Antibacterial Activity of MgO: Non-ROS Mediated Toxicity of MgO Nanoparticles Towards Escherichia coli. Small, 10(6), 1171–1183. https://doi.org/10.1002/smll.201302434
Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171–2178. https://doi.org/10.1128/AEM.02001-07
Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211–8225. https://doi.org/10.2147/IJN.S132163
Baptista, P. v., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans.” Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01441
Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. (2019). Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/ijms20102468
Miller, K. P., Wang, L., Benicewicz, B. C., &Decho, A. W. (2015). Inorganic nanoparticles engineered to attack bacteria. Chemical Society Reviews, 44(21), 7787–7807. https://doi.org/10.1039/c5cs00041f
Wang, L., Chen, Y. P., Miller, K. P., Cash, B. M., Jones, S., Glenn, S., Benicewicz, B. C., &Decho, A. W. (2014). Functionalised nanoparticles complexed with antibiotic efficiently kill MRSA and other bacteria. Chemical Communications (Cambridge, England), 50(81), 12030–12033. https://doi.org/10.1039/c4cc04936e
Obuobi, S., Julin, K., Fredheim, E. G. A., Johannessen, M., &Škalko-Basnet, N. (2020). Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. Journal of Controlled Release, 324, 620–632. https://doi.org/10.1016/j.jconrel.2020.06.002
Chen, M., Xie, S., Wei, J., Song, X., Ding, Z., & Li, X. (2018). Antibacterial Micelles with Vancomycin-Mediated Targeting and pH/Lipase-Triggered Release of Antibiotics. ACS Applied Materials & Interfaces, 10(43), 36814–36823. https://doi.org/10.1021/acsami.8b16092
Sonawane, S. J., Kalhapure, R. S., Rambharose, S., Mocktar, C., Vepuri, S. B., Soliman, M., & Govender, T. (2016). Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies. International Journal of Pharmaceutics, 504(1– 2), 1–10. https://doi.org/10.1016/j.ijpharm.2016.03.021
Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles Functionalized with Ampicillin Destroy Multiple-Antibiotic-Resistant Isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78(8), 2768–2774. https://doi.org/10.1128/AEM.06513-11
Ahangari A., Salouti M., Heidari Z., Kazemizadeh A. R., Safari A. A. (2013). Development of Gentamicin-Gold Nanospheres for Antimicrobial Drug Delivery toStaphylococcalinfected Foci. Drug Deliv. 20 (1), 34–39. 10.3109/10717544.2012.746402
Gu, H., Ho, P. L., Tong, E., Wang, L., & Xu, B. (2003). Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. Nano Letters, 3(9), 1261–1263. https://doi.org/10.1021/nl034396z
Armijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., Cook, M. C., Huber, D. L., Monson, T. C., Smyth, H. D. C., &Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1), 35. https://doi.org/10.1186/s12951020-0588-6
Bellio, P., Luzi, C., Mancini, A., Cracchiolo, S., Passacantando, M., di Pietro, L., Perilli, M., Amicosante, G., Santucci, S., &Celenza, G. (2018). Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(11), 2428–2435. https://doi.org/10.1016/j.bbamem.2018.07.002
Carver, J. A., Simpson, A. L., Rathi, R. P., Normil, N., Lee, A. G., Force, M. D., Fiocca, K. A., Maley, C. E., DiJoseph, K. M., Goldstein, A. L., Attari, A. A., O’Malley, H. L., Zaccaro, J. G., McCampbell, N. M., Wentz, C. A., Long, J. E., McQueen, L. M., Sirch, F. J., Johnson, B. K., … Ellison, M. D. (2020). Functionalized Single-Walled Carbon Nanotubes and Nanographene Oxide to Overcome Antibiotic Resistance in Tetracycline-Resistant Escherichia coli. ACS Applied Nano Materials, 3(4), 3910–3921. https://doi.org/10.1021/acsanm.0c00677
Poolman, J. T. (2020). Expanding the role of bacterial vaccines into life-course vaccination strategies and prevention of antimicrobial-resistant infections. Npj Vaccines, 5(1), 84. https://doi.org/10.1038/s41541-020-00232-0
Bekeredjian-Ding, I. (2020). Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01755
Osterloh, A. (2022). Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines, 10(5), 751. https://doi.org/10.3390/vaccines10050751
Marques Neto, L. M., Kipnis, A., &Junqueira-Kipnis, A. P. (2017). Role of Metallic Nanoparticles in Vaccinology: Implications for Infectious Disease Vaccine Development. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00239
Curley, S. M., & Putnam, D. (2022). Biological Nanoparticles in Vaccine Development. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.867119
Fries, C. N., Curvino, E. J., Chen, J.-L., Permar, S. R., Fouda, G. G., & Collier, J. H. (2021). Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nature Nanotechnology, 16(4), 1–14. https://doi.org/10.1038/s41565-020-0739-9
Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 7, 5577–5591. https://doi.org/10.2147/IJN.S36111
Singh, B., Maharjan, S., Cho, K.-H., Cui, L., Park, I.-K., Choi, Y.-J., & Cho, C.-S. (2018). Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. International Journal of Biological Macromolecules, 110, 54–64. https://doi.org/10.1016/j.ijbiomac.2017.10.101
Bivas-Benita, M., van Meijgaarden, K. E., Franken, K. L. M. C., Junginger, H. E., Borchard, G., Ottenhoff, T. H. M., &Geluk, A. (2004). Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine, 22(13–14), 1609–1615. https://doi.org/10.1016/j.vaccine.2003.09.044
Feng, C., Li, Y., Ferdows, B. E., Patel, D. N., Ouyang, J., Tang, Z., Kong, N., Chen, E., & Tao, W. (2022). Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharmaceutica Sinica B, 12(5), 2206–2223. https://doi.org/10.1016/j.apsb.2021.12.021
Hanson, M. C., Crespo, M. P., Abraham, W., Moynihan, K. D., Szeto, G. L., Chen, S. H., Melo, M. B., Mueller, S., & Irvine, D. J. (2015). Nanoparticulate STING agonists are potent lymph node– targeted vaccine adjuvants. Journal of Clinical Investigation, 125(6), 2532–2546. https://doi.org/10.1172/JCI79915
Ilyinskii, P. O., Roy, C. J., O’Neil, C. P., Browning, E. A., Pittet, L. A., Altreuter, D. H., Alexis, F., Tonti, E., Shi, J., Basto, P. A., Iannacone, M., Radovic-Moreno, A. F., Langer, R. S., Farokhzad, O. C., von Andrian, U. H., Johnston, L. P. M., &Kishimoto, T. K. (2014). Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine, 32(24), 2882–2895. https://doi.org/10.1016/j.vaccine.2014.02.027
Pati, R., Shevtsov, M., &Sonawane, A. (2018). Nanoparticle Vaccines Against Infectious Diseases. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02224
Irvine, D. J., Hanson, M. C., Rakhra, K., &Tokatlian, T. (2015). Synthetic Nanoparticles for Vaccines and Immunotherapy. Chemical Reviews, 115(19), 11109–11146. https://doi.org/10.1021/acs.chemrev.5b00109
Kaminskas, L. M., & Porter, C. J. H. (2011). Targeting the lymphatics using dendritic polymers (dendrimers). Advanced Drug Delivery Reviews, 63(10–11), 890–900. https://doi.org/10.1016/j.addr.2011.05.016
Leleux, J., Atalis, A., & Roy, K. (2015). Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. Journal of Controlled Release, 219, 610–621. https://doi.org/10.1016/j.jconrel.2015.09.063
Mérillon, J.-M., & Riviere, C. (Eds.). (2018). Natural Antimicrobial Agents (Vol. 19). Springer International Publishing. https://doi.org/10.1007/978-3-319-67045-4
Stringaro, A., Colone, M., &Angiolella, L. (2018). Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils. Medicines, 5(4), 112. https://doi.org/10.3390/medicines5040112
Benzaid, C., Belmadani, A., Djeribi, R., &Rouabhia, M. (2019). The Effects of Mentha × piperita Essential Oil on C. albicans Growth, Transition, Biofilm Formation, and the Expression of Secreted Aspartyl Proteinases Genes. Antibiotics, 8(1), 10. https://doi.org/10.3390/antibiotics8010010
Brun, P., Bernabè, G., Filippini, R., &Piovan, A. (2019). In Vitro Antimicrobial Activities of Commercially Available Tea Tree (Melaleuca alternifolia) Essential Oils. Current Microbiology, 76(1), 108–116. https://doi.org/10.1007/s00284-018-1594-x
Yap PSX, Lim SHE, Hu CP, Yiap BC. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine. 2013;20(8):710-713 https://doi.org/10.1016/j.phymed.2013.02.013
Cavanagh, H. M. A., & Wilkinson, J. M. (2005). Lavender essential oil: a review. Australian Infection Control, 10(1), 35–37. https://doi.org/10.1071/HI05035
Roller S, Ernest N, Buckle J. The antimicrobial activity of high-necrodane and other lavender oils on methicillin-sensitive and -resistant Staphylococcus aureus (MSSA and MRSA). Journal of Alternative and Complementary Medicine. 2009;15(3):275-279
de Rapper, S., Viljoen, A., & van Vuuren, S. (2016). The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents.
Evidence-Based Complementary and Alternative Medicine, 2016, 1–9. https://doi.org/10.1155/2016/2752739
Haddi K, Faroni LRA, Eugenio O. Cinnamon oil. In: ResearchGate [Internet]. 1st ed. United States: CRC Press/Taylor & Francis Group; 2017. pp. 118-150
Yang, S.-K., Yusoff, K., Mai, C.-W., Lim, W.-M., Yap, W.-S., Lim, S.-H., & Lai, K.-S. (2017). Additivity vs Synergism: Investigation of the Additive Interaction of Cinnamon Bark Oil and Meropenem in Combinatory Therapy. Molecules, 22(11), 1733. https://doi.org/10.3390/molecules22111733
Magetsari, R. (2013). Antimicrobial Agent against Staphylococcus Epidermidis. Malaysian Orthopaedic Journal, 7(3), 10–14. https://doi.org/10.5704/MOJ.1311.010
MOSS, M., COOK, J., WESNES, K., & DUCKETT, P. (2003). AROMAS OF ROSEMARY AND LAVENDER ESSENTIAL OILS DIFFERENTIALLY AFFECT COGNITION AND MOOD IN HEALTHY ADULTS. International Journal of Neuroscience, 113(1), 15–38. https://doi.org/10.1080/00207450390161903
Singh, R., Shushni, M. A. M., &Belkheir, A. (2015). Antibacterial and antioxidant activities of Mentha piperita L. Arabian Journal of Chemistry, 8(3), 322–328. https://doi.org/10.1016/j.arabjc.2011.01.019
Bodier-Montagutelli, E., Morello, E., L’Hostis, G., Guillon, A., Dalloneau, E., Respaud, R., Pallaoro, N., Blois, H., Vecellio, L., Gabard, J., &Heuzé-Vourc’h, N. (2017). Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opinion on Drug Delivery, 14(8), 959–972. https://doi.org/10.1080/17425247.2017.1252329
Penesyan, A., Gillings, M., & Paulsen, I. (2015). Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules, 20(4), 5286–5298. https://doi.org/10.3390/molecules20045286
Blaskovich, M. A. T., Pitt, M. E., Elliott, A. G., & Cooper, M. A. (2018). Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria? Expert Review of Anti-Infective Therapy, 16(6), 485–499. https://doi.org/10.1080/14787210.2018.1483240
Dorval Courchesne NM, Parisien A, Lan CQ. Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol. 2009;3:37–45. https://doi.org/10.2174/187220809787172678
Hagens, S., &Loessner, M. J. (2007). Application of bacteriophages for detection and control of foodborne pathogens. Applied Microbiology and Biotechnology, 76(3), 513–519. https://doi.org/10.1007/s00253-007-1031-8
Nagel, T. E., Chan, B. K., de Vos, D., El-Shibiny, A., Kang’ethe, E. K., Makumi, A., &Pirnay, J.-P. (2016). The Developing World Urgently Needs Phages to Combat Pathogenic Bacteria. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00882
Yin, S., Huang, G., Zhang, Y., Jiang, B., Yang, Z., Dong, Z., You, B., Yuan, Z., Hu, F., Zhao, Y., & Peng, Y. (2017). Phage Abp1 Rescues Human Cells and Mice from Infection by Pan-Drug Resistant Acinetobacter Baumannii. Cellular Physiology and Biochemistry, 44(6), 2337– 2345. https://doi.org/10.1159/000486117
Wittebole, X., de Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226–235. https://doi.org/10.4161/viru.25991
Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K.,
Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A., … Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumanniiInfection. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/AAC.00954-17
Ooi, M. L., Drilling, A. J., Morales, S., Fong, S., Moraitis, S., Macias-Valle, L., Vreugde, S., Psaltis, A. J., & Wormald, P.-J. (2019). Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngology–Head & Neck Surgery, 145(8), 723. https://doi.org/10.1001/jamaoto.2019.1191
Fish, R., Kutter, E., Wheat, G., Blasdel, B., Kutateladze, M., & Kuhl, S. (2016). Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. Journal of Wound Care, 25(Sup7), S27–S33. https://doi.org/10.12968/jowc.2016.25.Sup7.S27
Chan, B. K., Turner, P. E., Kim, S., Mojibian, H. R., Elefteriades, J. A., & Narayan, D. (2018). Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evolution, Medicine, and Public Health, 2018(1), 60–66. https://doi.org/10.1093/emph/eoy005
Jennes, S., Merabishvili, M., Soentjens, P., Pang, K. W., Rose, T., Keersebilck, E., Soete, O., François, P.-M., Teodorescu, S., Verween, G., Verbeken, G., de Vos, D., &Pirnay, J.-P. (2017). Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Critical Care, 21(1), 129. https://doi.org/10.1186/s13054-017-1709-y
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.