Evolutionary Approaches to Combat Antibiotic Resistance in Microbes

Authors

  • Sunita Rani Research Scholar, Department of Microbiology, RIMT University, Mandi Gobindgarh, Punjab, India Author
  • Priyanka Research Scholar, Department of Microbiology, RIMT University, Mandi Gobindgarh, Punjab, India Author
  • Sonam Sharma Research Scholar, Department of Microbiology, RIMT University, Mandi Gobindgarh, Punjab, India Author
  • Tinku Masters in Medical Laboratory Sciences, Charles Darwin University, Darwin, Australia Author
  • Rajesh Kumar Assistant Professor, Department of Paramedical Sciences, Guru Kashi University, Talwandi Sabo, Punjab, India Author
  • Vinay Kumar Assistant Professor, Department of Medical Laboratory Science, RIMT University, Mandi Gobindgarh, Punjab, India Author

DOI:

https://doi.org/10.32628/IJSRSET

Keywords:

Antibiotics Resistance, Nano Therapy, Quorum Sensing, Bacteriocins

Abstract

Antibiotics are one of the most important discoveries yet on earth. However, the rise of antibiotic resistance among microorganisms has lowered their potency of treatment for diseases which is now becoming life-threatening to patients. In this context, the present review discusses the reason for the development of resistance among bacteria through their mechanisms and evolutionary approaches to address this issue. Quorum sensing inhibition, bacteriocins, nano therapy, phage therapy, and essential oils have been discussed in the present work.

📊 Article Downloads

References

Ramaswamy, S., & Musser, J. M. (1998). Molecular genetic basis of antimicrobial agent resistance inMycobacterium tuberculosis: 1998 update. Tubercle and Lung Disease, 79(1), 3–29. https://doi.org/10.1054/TULD.1998.0002

Telenti, A., Imboden, P., Marchesi, F., Lowrie, D., Cole, S., Colston, M. J., Matter, L., Schopfer, K., &Bodmer, T. (1993). Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet (London, England), 341(8846), 647–650. https://doi.org/10.1016/01406736(93)90417-f

Calvori, C., Frontali, L., Leoni, L., &Tecce, G. (1965). Effect of rifamycin on protein synthesis. Nature, 207(995), 417–418. https://doi.org/10.1038/207417a0

Ambler, R. P., Coulson, A. F., Frère, J. M., Ghuysen, J. M., Joris, B., Forsman, M., Levesque, R. C., Tiraby, G., &Waley, S. G. (1991). A standard numbering scheme for the class A beta-lactamases. The Biochemical Journal, 276 ( Pt 1)(Pt 1), 269–270. https://doi.org/10.1042/bj2760269

Zervos, M. J., Kauffman, C. A., Therasse, P. M., Bergman, A. G., Mikesell, T. S., & Schaberg, D. R. (1987). Nosocomial infection by gentamicin-resistant Streptococcus faecalis. An epidemiologic study. Annals of Internal Medicine, 106(5), 687–691. https://doi.org/10.7326/0003-4819-106-5-687

Matthew, M. (1979). Plasmid-mediated beta-lactamases of Gram-negative bacteria: properties and distribution. The Journal of Antimicrobial Chemotherapy, 5(4), 349–358. https://doi.org/10.1093/jac/5.4.349

Medeiros, A. A. (1997). beta-Lactamases: quality and resistance. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 3 Suppl 4, S2–S9.

Tornieporth, N. G., Roberts, R. B., John, J., Hafner, A., & Riley, L. W. (1996). Risk factors associated with vancomycin-resistant Enterococcus faecium infection or colonization in 145 matched case patients and control patients. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 23(4), 767–772. https://doi.org/10.1093/clinids/23.4.767

“What Are VRE? Symptoms, Causes, Diagnosis, Treatment, and Prevention.” EverydayHealth.com

Simpson, I. N., Harper, P. B., & O’Callaghan, C. H. (1980). Principal beta-lactamases responsible for resistance to beta-lactam antibiotics in urinary tract infections. Antimicrobial Agents and Chemotherapy, 17(6), 929–936. https://doi.org/10.1128/AAC.17.6.929

Poirel, L., Héritier, C., Tolün, V., & Nordmann, P. (2004). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 48(1), 15–22. https://doi.org/10.1128/AAC.48.1.15-22.2004

Siddiqui, Abdul H., and Janak Koirala. “Methicillin Resistant Staphylococcus Aureus.” PubMed, StatPearls Publishing, 2022, www.ncbi.nlm.nih.gov/books/NBK482221/#:~:text=Based%20on%20the%20antibiotic%20susc eptibilities. Accessed 26 Apr. 2022

Munita, J. M., & Arias, C. A. (2016b). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

Shahkarami, F., Rashki, A., &RashkiGhalehnoo, Z. (2014). Microbial Susceptibility and Plasmid Profiles of Methicillin-Resistant Staphylococcus aureus and Methicillin-Susceptible S. aureus. Jundishapur Journal of Microbiology, 7(7), e16984. https://doi.org/10.5812/jjm.16984

David, M. Z., &Daum, R. S. (2010). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23(3), 616–687. https://doi.org/10.1128/CMR.00081-09

Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14

Staphylococcal Skin Infections | DermNet NZ.” Dermnetnz.org, dermnetnz.org/topics/staphylococcal-skin-infection

Carnicer-Pont, D., Bailey, K. A., Mason, B. W., Walker, A. M., Evans, M. R., & Salmon, R. L. (2006). Risk factors for hospital-acquired methicillin-resistant Staphylococcus aureus bacteraemia: a case-control study. Epidemiology and Infection, 134(6), 1167–1173. https://doi.org/10.1017/S0950268806006327

Lee, A. S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., &Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews. Disease Primers, 4, 18033. https://doi.org/10.1038/nrdp.2018.33

Solan, Matthew. “MRSA (Staph) Infection.” Healthline, Healthline Media, 20 Aug. 2012,

“Enterococcus Faecalis: Causes, Symptoms, and Treatments.” Healthline, 2017,

“VRE: Symptoms, Causes, and Treatment.” Healthline, 26 June 2017,

Cetinkaya, Y., Falk, P., &Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clinical Microbiology Reviews, 13(4), 686–707. https://doi.org/10.1128/CMR.13.4.686

Patrick, Charles. “Vancomycin-Resistant Enterococci: VRE Symptoms & Treatment.” MedicineNet, 2018,

Seung, K. J., Keshavjee, S., & Rich, M. L. (2015). Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 5(9), a017863. https://doi.org/10.1101/cshperspect.a017863

WebMD. “Tuberculosis (TB).” WebMD, WebMD, 17 Jan. 2017,

Rath, Linda. “What Are CRE.” WebMD,

“Articles.” Cedars-Sinai, www.cedars-sinai.org/health-library/diseases-and conditions/c/carbapenem-resistant-enterobacteriaceae.html

Queenan, Anne Marie, and Karen Bush. “Carbapenemases: the versatile beta-lactamases.” Clinical microbiology reviews vol. 20,3 (2007): 440-58, table of contents. https://doi.org/10.1128/CMR.00001-07

Marsik, F. J., & Nambiar, S. (2011). Review of carbapenemases and AmpC-beta lactamases. The Pediatric Infectious Disease Journal, 30(12), 1094–1095. https://doi.org/10.1097/INF.0b013e31823c0e47

Kapoor, G., Saigal, S., &Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33(3), 300. https://doi.org/10.4103/joacp.JOACP_349_15

Opal, S.M., & Pop-Vicas, A.E. (2010). Molecular Mechanisms of Antibiotic Resistance in Bacteria.

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. v. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380

Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267. https://doi.org/10.1016/j.bbrc.2014.05.090

Choudhury, H. G., Tong, Z., Mathavan, I., Li, Y., Iwata, S., Zirah, S., Rebuffat, S., van Veen, H. W., &Beis, K. (2014). Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9145–9150. https://doi.org/10.1073/pnas.1320506111

Guilfoile, P. G., & Hutchinson, C. R. (1991). A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proceedings of the National Academy of Sciences of the United States of America, 88(19), 8553–8557. https://doi.org/10.1073/pnas.88.19.8553

Du, D., Wang-Kan, X., Neuberger, A., van Veen, H. W., Pos, K. M., Piddock, L. J. v., & Luisi, B. F. (2018). Multidrug efflux pumps: structure, function and regulation. Nature Reviews Microbiology, 16(9), 523–539. https://doi.org/10.1038/s41579-018-0048-6

Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339. https://doi.org/10.1016/S0168-6445(03)00048-2

Pang, Z., Raudonis, R., Glick, B. R., Lin, T.-J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

Su, C.-C., Yin, L., Kumar, N., Dai, L., Radhakrishnan, A., Bolla, J. R., Lei, H.-T., Chou, T.-H., Delmar, J. A., Rajashankar, K. R., Zhang, Q., Shin, Y.-K., & Yu, E. W. (2017). Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nature Communications, 8(1), 171. https://doi.org/10.1038/s41467-017-00217-z

Chitsaz, M., Booth, L., Blyth, M. T., O’Mara, M. L., & Brown, M. H. (2019). Multidrug Resistance in Neisseria gonorrhoeae: Identification of Functionally Important Residues in the MtrD Efflux Protein. MBio, 10(6). https://doi.org/10.1128/mBio.02277-19

Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., &Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and Drug Resistance, 13, 423–434. https://doi.org/10.2147/IDR.S228089

Neuberger, A., Du, D., & Luisi, B. F. (2018). Structure and mechanism of bacterial tripartite efflux pumps. Research in Microbiology, 169(7–8), 401–413. https://doi.org/10.1016/j.resmic.2018.05.003

Quillin, S. J., Schwartz, K. T., &Leber, J. H. (2011). The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT. Molecular Microbiology, 81(1), 129–142. https://doi.org/10.1111/j.1365-2958.2011.07683.x

Bay, D. C., & Turner, R. J. (2016b). Small Multidrug Resistance Efflux Pumps. In Efflux-Mediated Antimicrobial Resistance in Bacteria (pp. 45–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-39658-3_3

Grinius, L. L., & Goldberg, E. B. (1994). Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. The Journal of Biological Chemistry, 269(47), 29998–30004

Zhao, X., Yu, Z., & Ding, T. (2020). Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030425

Yada, S., Kamalesh, B., Sonwane, S., Guptha, I., & Swetha, R. K. (2015). Quorum sensing inhibition, relevance to periodontics. Journal of International Oral Health : JIOH, 7(1), 67–69.

Gillor, O., Etzion, A., & Riley, M. A. (2008). The dual role of bacteriocins as anti- and probiotics. Applied Microbiology and Biotechnology, 81(4), 591–606. https://doi.org/10.1007/s00253-0081726-5

Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annual Review of Microbiology, 56, 117–137. https://doi.org/10.1146/annurev.micro.56.012302.161024

Edmundson, M., Thanh, N. T., & Song, B. (2013). Nanoparticles based stem cell tracking in regenerative medicine. Theranostics, 3(8), 573–582. https://doi.org/10.7150/thno.5477

Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces, 8(7), 4963–4976. https://doi.org/10.1021/acsami.6b00161

Gurunathan, S., Han, J. W., Dayem, A. A., Eppakayala, V., & Kim, J.-H. (2012). Oxidative stressmediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 7, 5901–5914. https://doi.org/10.2147/IJN.S37397

Nagy, A., Harrison, A., Sabbani, S., Munson, R. S., Dutta, P. K., & Waldman, W. J. (2011). Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. International Journal of Nanomedicine, 6, 1833–1852. https://doi.org/10.2147/IJN.S24019

Leung, Y. H., Ng, A. M. C., Xu, X., Shen, Z., Gethings, L. A., Wong, M. T., Chan, C. M. N., Guo, M. Y., Ng, Y. H., Djurišić, A. B., Lee, P. K. H., Chan, W. K., Yu, L. H., Phillips, D. L., Ma, A. P. Y., & Leung, F. C. C. (2014). Mechanisms of Antibacterial Activity of MgO: Non-ROS Mediated Toxicity of MgO Nanoparticles Towards Escherichia coli. Small, 10(6), 1171–1183. https://doi.org/10.1002/smll.201302434

Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171–2178. https://doi.org/10.1128/AEM.02001-07

Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211–8225. https://doi.org/10.2147/IJN.S132163

Baptista, P. v., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans.” Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01441

Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. (2019). Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/ijms20102468

Miller, K. P., Wang, L., Benicewicz, B. C., &Decho, A. W. (2015). Inorganic nanoparticles engineered to attack bacteria. Chemical Society Reviews, 44(21), 7787–7807. https://doi.org/10.1039/c5cs00041f

Wang, L., Chen, Y. P., Miller, K. P., Cash, B. M., Jones, S., Glenn, S., Benicewicz, B. C., &Decho, A. W. (2014). Functionalised nanoparticles complexed with antibiotic efficiently kill MRSA and other bacteria. Chemical Communications (Cambridge, England), 50(81), 12030–12033. https://doi.org/10.1039/c4cc04936e

Obuobi, S., Julin, K., Fredheim, E. G. A., Johannessen, M., &Škalko-Basnet, N. (2020). Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. Journal of Controlled Release, 324, 620–632. https://doi.org/10.1016/j.jconrel.2020.06.002

Chen, M., Xie, S., Wei, J., Song, X., Ding, Z., & Li, X. (2018). Antibacterial Micelles with Vancomycin-Mediated Targeting and pH/Lipase-Triggered Release of Antibiotics. ACS Applied Materials & Interfaces, 10(43), 36814–36823. https://doi.org/10.1021/acsami.8b16092

Sonawane, S. J., Kalhapure, R. S., Rambharose, S., Mocktar, C., Vepuri, S. B., Soliman, M., & Govender, T. (2016). Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies. International Journal of Pharmaceutics, 504(1– 2), 1–10. https://doi.org/10.1016/j.ijpharm.2016.03.021

Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles Functionalized with Ampicillin Destroy Multiple-Antibiotic-Resistant Isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78(8), 2768–2774. https://doi.org/10.1128/AEM.06513-11

Ahangari A., Salouti M., Heidari Z., Kazemizadeh A. R., Safari A. A. (2013). Development of Gentamicin-Gold Nanospheres for Antimicrobial Drug Delivery toStaphylococcalinfected Foci. Drug Deliv. 20 (1), 34–39. 10.3109/10717544.2012.746402

Gu, H., Ho, P. L., Tong, E., Wang, L., & Xu, B. (2003). Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. Nano Letters, 3(9), 1261–1263. https://doi.org/10.1021/nl034396z

Armijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., Cook, M. C., Huber, D. L., Monson, T. C., Smyth, H. D. C., &Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1), 35. https://doi.org/10.1186/s12951020-0588-6

Bellio, P., Luzi, C., Mancini, A., Cracchiolo, S., Passacantando, M., di Pietro, L., Perilli, M., Amicosante, G., Santucci, S., &Celenza, G. (2018). Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(11), 2428–2435. https://doi.org/10.1016/j.bbamem.2018.07.002

Carver, J. A., Simpson, A. L., Rathi, R. P., Normil, N., Lee, A. G., Force, M. D., Fiocca, K. A., Maley, C. E., DiJoseph, K. M., Goldstein, A. L., Attari, A. A., O’Malley, H. L., Zaccaro, J. G., McCampbell, N. M., Wentz, C. A., Long, J. E., McQueen, L. M., Sirch, F. J., Johnson, B. K., … Ellison, M. D. (2020). Functionalized Single-Walled Carbon Nanotubes and Nanographene Oxide to Overcome Antibiotic Resistance in Tetracycline-Resistant Escherichia coli. ACS Applied Nano Materials, 3(4), 3910–3921. https://doi.org/10.1021/acsanm.0c00677

Poolman, J. T. (2020). Expanding the role of bacterial vaccines into life-course vaccination strategies and prevention of antimicrobial-resistant infections. Npj Vaccines, 5(1), 84. https://doi.org/10.1038/s41541-020-00232-0

Bekeredjian-Ding, I. (2020). Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01755

Osterloh, A. (2022). Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines, 10(5), 751. https://doi.org/10.3390/vaccines10050751

Marques Neto, L. M., Kipnis, A., &Junqueira-Kipnis, A. P. (2017). Role of Metallic Nanoparticles in Vaccinology: Implications for Infectious Disease Vaccine Development. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00239

Curley, S. M., & Putnam, D. (2022). Biological Nanoparticles in Vaccine Development. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.867119

Fries, C. N., Curvino, E. J., Chen, J.-L., Permar, S. R., Fouda, G. G., & Collier, J. H. (2021). Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nature Nanotechnology, 16(4), 1–14. https://doi.org/10.1038/s41565-020-0739-9

Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 7, 5577–5591. https://doi.org/10.2147/IJN.S36111

Singh, B., Maharjan, S., Cho, K.-H., Cui, L., Park, I.-K., Choi, Y.-J., & Cho, C.-S. (2018). Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. International Journal of Biological Macromolecules, 110, 54–64. https://doi.org/10.1016/j.ijbiomac.2017.10.101

Bivas-Benita, M., van Meijgaarden, K. E., Franken, K. L. M. C., Junginger, H. E., Borchard, G., Ottenhoff, T. H. M., &Geluk, A. (2004). Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine, 22(13–14), 1609–1615. https://doi.org/10.1016/j.vaccine.2003.09.044

Feng, C., Li, Y., Ferdows, B. E., Patel, D. N., Ouyang, J., Tang, Z., Kong, N., Chen, E., & Tao, W. (2022). Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharmaceutica Sinica B, 12(5), 2206–2223. https://doi.org/10.1016/j.apsb.2021.12.021

Hanson, M. C., Crespo, M. P., Abraham, W., Moynihan, K. D., Szeto, G. L., Chen, S. H., Melo, M. B., Mueller, S., & Irvine, D. J. (2015). Nanoparticulate STING agonists are potent lymph node– targeted vaccine adjuvants. Journal of Clinical Investigation, 125(6), 2532–2546. https://doi.org/10.1172/JCI79915

Ilyinskii, P. O., Roy, C. J., O’Neil, C. P., Browning, E. A., Pittet, L. A., Altreuter, D. H., Alexis, F., Tonti, E., Shi, J., Basto, P. A., Iannacone, M., Radovic-Moreno, A. F., Langer, R. S., Farokhzad, O. C., von Andrian, U. H., Johnston, L. P. M., &Kishimoto, T. K. (2014). Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine, 32(24), 2882–2895. https://doi.org/10.1016/j.vaccine.2014.02.027

Pati, R., Shevtsov, M., &Sonawane, A. (2018). Nanoparticle Vaccines Against Infectious Diseases. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02224

Irvine, D. J., Hanson, M. C., Rakhra, K., &Tokatlian, T. (2015). Synthetic Nanoparticles for Vaccines and Immunotherapy. Chemical Reviews, 115(19), 11109–11146. https://doi.org/10.1021/acs.chemrev.5b00109

Kaminskas, L. M., & Porter, C. J. H. (2011). Targeting the lymphatics using dendritic polymers (dendrimers). Advanced Drug Delivery Reviews, 63(10–11), 890–900. https://doi.org/10.1016/j.addr.2011.05.016

Leleux, J., Atalis, A., & Roy, K. (2015). Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. Journal of Controlled Release, 219, 610–621. https://doi.org/10.1016/j.jconrel.2015.09.063

Mérillon, J.-M., & Riviere, C. (Eds.). (2018). Natural Antimicrobial Agents (Vol. 19). Springer International Publishing. https://doi.org/10.1007/978-3-319-67045-4

Stringaro, A., Colone, M., &Angiolella, L. (2018). Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils. Medicines, 5(4), 112. https://doi.org/10.3390/medicines5040112

Benzaid, C., Belmadani, A., Djeribi, R., &Rouabhia, M. (2019). The Effects of Mentha × piperita Essential Oil on C. albicans Growth, Transition, Biofilm Formation, and the Expression of Secreted Aspartyl Proteinases Genes. Antibiotics, 8(1), 10. https://doi.org/10.3390/antibiotics8010010

Brun, P., Bernabè, G., Filippini, R., &Piovan, A. (2019). In Vitro Antimicrobial Activities of Commercially Available Tea Tree (Melaleuca alternifolia) Essential Oils. Current Microbiology, 76(1), 108–116. https://doi.org/10.1007/s00284-018-1594-x

Yap PSX, Lim SHE, Hu CP, Yiap BC. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine. 2013;20(8):710-713 https://doi.org/10.1016/j.phymed.2013.02.013

Cavanagh, H. M. A., & Wilkinson, J. M. (2005). Lavender essential oil: a review. Australian Infection Control, 10(1), 35–37. https://doi.org/10.1071/HI05035

Roller S, Ernest N, Buckle J. The antimicrobial activity of high-necrodane and other lavender oils on methicillin-sensitive and -resistant Staphylococcus aureus (MSSA and MRSA). Journal of Alternative and Complementary Medicine. 2009;15(3):275-279

de Rapper, S., Viljoen, A., & van Vuuren, S. (2016). The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents.

Evidence-Based Complementary and Alternative Medicine, 2016, 1–9. https://doi.org/10.1155/2016/2752739

Haddi K, Faroni LRA, Eugenio O. Cinnamon oil. In: ResearchGate [Internet]. 1st ed. United States: CRC Press/Taylor & Francis Group; 2017. pp. 118-150

Yang, S.-K., Yusoff, K., Mai, C.-W., Lim, W.-M., Yap, W.-S., Lim, S.-H., & Lai, K.-S. (2017). Additivity vs Synergism: Investigation of the Additive Interaction of Cinnamon Bark Oil and Meropenem in Combinatory Therapy. Molecules, 22(11), 1733. https://doi.org/10.3390/molecules22111733

Magetsari, R. (2013). Antimicrobial Agent against Staphylococcus Epidermidis. Malaysian Orthopaedic Journal, 7(3), 10–14. https://doi.org/10.5704/MOJ.1311.010

MOSS, M., COOK, J., WESNES, K., & DUCKETT, P. (2003). AROMAS OF ROSEMARY AND LAVENDER ESSENTIAL OILS DIFFERENTIALLY AFFECT COGNITION AND MOOD IN HEALTHY ADULTS. International Journal of Neuroscience, 113(1), 15–38. https://doi.org/10.1080/00207450390161903

Singh, R., Shushni, M. A. M., &Belkheir, A. (2015). Antibacterial and antioxidant activities of Mentha piperita L. Arabian Journal of Chemistry, 8(3), 322–328. https://doi.org/10.1016/j.arabjc.2011.01.019

Bodier-Montagutelli, E., Morello, E., L’Hostis, G., Guillon, A., Dalloneau, E., Respaud, R., Pallaoro, N., Blois, H., Vecellio, L., Gabard, J., &Heuzé-Vourc’h, N. (2017). Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opinion on Drug Delivery, 14(8), 959–972. https://doi.org/10.1080/17425247.2017.1252329

Penesyan, A., Gillings, M., & Paulsen, I. (2015). Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules, 20(4), 5286–5298. https://doi.org/10.3390/molecules20045286

Blaskovich, M. A. T., Pitt, M. E., Elliott, A. G., & Cooper, M. A. (2018). Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria? Expert Review of Anti-Infective Therapy, 16(6), 485–499. https://doi.org/10.1080/14787210.2018.1483240

Dorval Courchesne NM, Parisien A, Lan CQ. Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol. 2009;3:37–45. https://doi.org/10.2174/187220809787172678

Hagens, S., &Loessner, M. J. (2007). Application of bacteriophages for detection and control of foodborne pathogens. Applied Microbiology and Biotechnology, 76(3), 513–519. https://doi.org/10.1007/s00253-007-1031-8

Nagel, T. E., Chan, B. K., de Vos, D., El-Shibiny, A., Kang’ethe, E. K., Makumi, A., &Pirnay, J.-P. (2016). The Developing World Urgently Needs Phages to Combat Pathogenic Bacteria. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00882

Yin, S., Huang, G., Zhang, Y., Jiang, B., Yang, Z., Dong, Z., You, B., Yuan, Z., Hu, F., Zhao, Y., & Peng, Y. (2017). Phage Abp1 Rescues Human Cells and Mice from Infection by Pan-Drug Resistant Acinetobacter Baumannii. Cellular Physiology and Biochemistry, 44(6), 2337– 2345. https://doi.org/10.1159/000486117

Wittebole, X., de Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226–235. https://doi.org/10.4161/viru.25991

Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K.,

Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A., … Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumanniiInfection. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/AAC.00954-17

Ooi, M. L., Drilling, A. J., Morales, S., Fong, S., Moraitis, S., Macias-Valle, L., Vreugde, S., Psaltis, A. J., & Wormald, P.-J. (2019). Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngology–Head & Neck Surgery, 145(8), 723. https://doi.org/10.1001/jamaoto.2019.1191

Fish, R., Kutter, E., Wheat, G., Blasdel, B., Kutateladze, M., & Kuhl, S. (2016). Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. Journal of Wound Care, 25(Sup7), S27–S33. https://doi.org/10.12968/jowc.2016.25.Sup7.S27

Chan, B. K., Turner, P. E., Kim, S., Mojibian, H. R., Elefteriades, J. A., & Narayan, D. (2018). Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evolution, Medicine, and Public Health, 2018(1), 60–66. https://doi.org/10.1093/emph/eoy005

Jennes, S., Merabishvili, M., Soentjens, P., Pang, K. W., Rose, T., Keersebilck, E., Soete, O., François, P.-M., Teodorescu, S., Verween, G., Verbeken, G., de Vos, D., &Pirnay, J.-P. (2017). Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Critical Care, 21(1), 129. https://doi.org/10.1186/s13054-017-1709-y

Downloads

Published

14-08-2025

Issue

Section

Research Articles

How to Cite

[1]
Sunita Rani, Priyanka, Sonam Sharma, Tinku, Rajesh Kumar, and Vinay Kumar, “Evolutionary Approaches to Combat Antibiotic Resistance in Microbes”, Int J Sci Res Sci Eng Technol, vol. 12, no. 4, pp. 363–389, Aug. 2025, doi: 10.32628/IJSRSET.