Growth Dynamics of Flexor Muscle Fibers in Developing Male White Leghorn Chicks
DOI:
https://doi.org/10.32628/IJSRSET2411256Keywords:
Muscle fibers, Growth dynamics, Chick, Flexor, Hypertrophy, HyperplasiaAbstract
The study examines the relationship between fiber orientation, functional activity, and growth dynamics in the flexor muscle of a male white Leghorn chick. It tests three hypotheses: similar histochemical fiber typing in muscle mass, distribution patterns influenced by species' functional activities, and fiber growth dynamics related to somatic growth rate. The study confirmed the hypothesis that all three basic fiber types (red, pink, and white) grow exclusively through hypertrophy. True hyperplasia was not evident in any age group, possibly in the late embryonic stage. Some cases of pink and white fibers showed splitting into smaller ones. All three basic fiber types grew by hypertrophy, regardless of location or functional activity. Muscle fiber growth in this muscle mass was directly related to the chick's somatic growth rate.
Downloads
References
Anastasia Maria Zimmerman and Mary Sue Lowery (1999). Hyperplastic Development and Hypertrophic Growth of Muscle Fibers in the White Seabass (Atractoscion nobilis). Journal Of Experimental Zoology. 284:299–308. DOI: https://doi.org/10.1002/(SICI)1097-010X(19990801)284:3<299::AID-JEZ7>3.3.CO;2-Y
Chandra-Bose, D. A., and George, J. C. (1965). Pavo, 3, 23-28.
Chandra-Bose, D. A., Chinoy, N. J. and George, J. C. (1964). Pavo, 2, 61-64.
Chaplin, S.B., M. Munson and S.T. Knuth, 1997. The effect of exercise and restraint on pectoral muscle metabolism in pigeons. J. Comp. Physiol., 167 (B): 197-203. DOI: https://doi.org/10.1007/s003600050065
Cheral, Y., J. Robin and Y. Lemayo, 1988. Physiology and biochemistry of long-term fasting in birds. Can. J. Zool., 66: 159-166. DOI: https://doi.org/10.1139/z88-022
D’Angelis, F.H., 2004. Avaliação do efeito da suplementação prolongada com creatina sobre músculo estriado esquelético de eqüinos em treinamento aeróbico. Tese (Doutorado em
Dimpal, M. and Kundu, R. (2013). Fibers growth dynamics in Biceps brachii muscle of developing Chick in relation to somatic growth rate. Res. Jour. Pharm. Biol. & Chem. Sciences. 4 (1): 946-957.
Galloway, T.F., Kjørsvik, E. and Kryvi, H., 1999. Muscle growth and development in Atlantic cod larvae (Gadus morhua L.) related to different somatic growth rates. Journal of Experimental Biology, 202, 2111–2120 DOI: https://doi.org/10.1242/jeb.202.15.2111
Goldspink, G. and S. ¥. ¥ang, 1999. PoultryMeat Science: Poultry Science SymposiumVolume25. R.I. Richardson and G.C. Mead, (Ed.), p. 3-18. CABI Publishing, Wallingford, UK.
Hedrick, H. B., Aberle, E., Forrest, J. C. Judge, M. D. and Merkel, R. A. (1994). In Principles of Meat Science. Dubuque, Iowa, Kendall/Hunt Publ. Ch 3, pp. 55–78.
Higgins, P.J., Thorpe, J.E., 1990. Hyperplasia and hypertrophy in the growth of skeletal muscle in juvenile Atlantic salmon, Salmo salar L. J. Fish Biol. 37, 505–519. DOI: https://doi.org/10.1111/j.1095-8649.1990.tb05884.x
Johnston, I. A. Vieira, V. L. A. and Temple, G. K. (2001). Functional consequences and population differences in the developmental plasticity of muscle to temperature in Atlantic herring. Mar. Ecol. Prog. Ser., 213: 285-300. DOI: https://doi.org/10.3354/meps213285
Johnston, I.A., Cole, N.J., Vieira, V.L.A., Davidson, I., 1997. Temperature and developmental plasticity of muscle phenotype in herring larvae. J. Exp. Biol. 200, 849–868. DOI: https://doi.org/10.1242/jeb.200.5.849
Koumans, J. T. M., Akster, H.A., Booms, G.H.R., Lemmens, C.J.J. and Osse, J.W.M. (1991). Numbers of myosatellite cells in white axial muscle of growing fish; Cyprinus carpio L. (Teleostei). Am. K Anat. 192 : 418-425. DOI: https://doi.org/10.1002/aja.1001920409
Kundu R, Lakshmi R and Mansuri A. P. (1990). Growth dynamics of caudal and pectoral fin muscle fibers in a carangid, Caranx malabaricus (Cuv. and Val.) and their possible relation with somatic growth. J. Fish Biol., 37: 845-852. DOI: https://doi.org/10.1111/j.1095-8649.1990.tb03588.x
Kundu R, Lakshmi, R. and Mansuri A. P. (1991b). The proportion of different muscle fibers and their orientation in the myotomal and fin muscles of fish in relation to swimming activity. J. Curr. Biosci., 8(3): 89-94.
Kundu R. and Mansuri A. P. (1992). Growth of pectoral muscle fibers in relation to somatic growth rate in some marine fishes. Netherlands Journal of Zoology, 42(4) : 595-606. DOI: https://doi.org/10.1163/156854292X00099
Kundu, R. (1991). Muscle fiber diameter and its relationship with body shape and size in some marine fish. J. Curr. Biosci., 8(2), 53-61.
Kundu, R. and Mansuri A. P. (1994). Growth dynamics of myotomal muscle fibers and their relationship with somatic development in some marine teleosts. Ind. J. Exp. Biol., 32: 261-266.
Kundu, R., Lakshmi R and Mansuri A. P. (1991a). Growth dynamics of red, pink and white fibers in the caudal fin muscle in relation to the somatic growth in few marine fish. Marine Behaviour and Physiology, 19(2): 113 - 122. DOI: https://doi.org/10.1080/10236249109378800
Lojda, Z., Gossrau, R. and Schiebler, T.H. (1979). Enzyme Histochemistry: A Laboratory Manual, New York: Springer- Verlag. DOI: https://doi.org/10.1007/978-3-642-67234-7
Mankodi, P. C. (1988). Histochemical and histometrical characteristics of myotomal and fin muscle fibers - their possible relation to growth of some freshwater and marine fishes. Ph. D. Thesis. Saurashtra Univ. India.
Mascarello, F., Rowlerson, A., Radaelli, G., Scapolo, P.-A., Veggetti, A., 1995. Differentiation and growth of muscle in the fish Sparus aurata L.: I. Myosin expression and organisation of fiber types in the lateral muscles from hatching to adult. J. Muscle Res. Cell Motil. 16, 213–222. DOI: https://doi.org/10.1007/BF00121130
Michaela F.R. Alves, Flavia R. Abe and Isabel C. Boleli (2012). Influence of Enclosure Size on Growth of Breast and Leg Muscle Fibers in Domestic Fowl. International Journal of Poultry Science 11 (5): 361-367 DOI: https://doi.org/10.3923/ijps.2012.361.367
Pandya, S., Arora, K., Misra, S. and Kundu, R. (2003). Regional variations in fiber growth dynamics of myotomal and caudal fin muscles in relation to body size of a freshwater teleost, Barbus sarana (Cuv. & Val.). Ind. J. Exp. Biol., 41: 850-856.
Peter, J.B., R.J. Barnard, V.R. Edgerton, C.A. Gillepsie and E.K. Stempel, 1972. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochem., 11: 2627-2633. DOI: https://doi.org/10.1021/bi00764a013
Ryu, Y. C., Rhee, M. S. and Kim, B. C. (2004). Estimation of correlation coefficients between histological parameters and carcass traits of pig longissimus dorsi muscle. Asian-Australian. J. Anim. Sci., 17, 2004: 428–433. DOI: https://doi.org/10.5713/ajas.2004.428
Sokal, R.R. and Rohlf, F.J. (1969). Biometry. San Francisco: W.H. Freeman.
Stein, J. M. & Padykula, h. A. (1962). Histochemical classification of individual skeletal muscle fibers of the rat. Am. J. Anat. 110, 103-124. DOI: https://doi.org/10.1002/aja.1001100203
Stickland, N. C., 1995. Microstructural aspects of skeletal muscle growth. Pages 1–9 in: 2nd Dummerdorf Muscle Workshop—Muscle Growth and Meat Quality. Rostock, Germany.
Templeton, G.H., H.L. Sweeney and B.F. Timson, 1988. Changes in fiber composition of soleus muscle during rat hindlimb suspension. J. Appl. Physiol., 65: 1191-1195. DOI: https://doi.org/10.1152/jappl.1988.65.3.1191
Urso, M.I., A.G. Serimgeour, Y.W. Chen, P.D. Thompson and P.M. Clarkson, 2006. Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J. Appl. Physiol., 101: 1136-1148 DOI: https://doi.org/10.1152/japplphysiol.00180.2006
Weatherley, A.H. (1990). Approaches to understanding fish growth. Transac Am.Fish.Soc.119:662-672. DOI: https://doi.org/10.1577/1548-8659(1990)119<0662:ATUFG>2.3.CO;2
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.