Risk Factors for Anaemia, Iron Deficiency, and Iron Deficiency Anaemia in Women of Reproductive Age Using Logistic Regression

Authors

  • Shaly Wanda Hamzah Department of Statistics, IPB University, Bogor, Indonesia Author
  • Muhammad Nur Aidi Department of Statistics, IPB University, Bogor, Indonesia Author
  • I Made Sumertajaya Department of Statistics, IPB University, Bogor, Indonesia Author
  • Fitrah Ernawati National Research and Innovation Agency, Bogor, Indonesia Author

DOI:

https://doi.org/10.32628/IJSRSET2411260

Keywords:

Logistic Regression, Anemia, Iron Deficiency, Iron Deficiency Anemia, Reproductive-Age Women

Abstract

Women of reproductive age (WRA) are vulnerable to anaemia, iron deficiency (ID), or iron deficiency anaemia (IDA). To identify the factors influencing anaemia, ID, and IDA to WRA in Indonesia, logistic regression analysis was employed. This study aims to determine the prevalence of anaemia, ID, and AID among WRA, as well as to identify influencing factors and evaluate the classification results produced by Logistic Regression methods. The data used were obtained from the Research and Development Agency, Ministry of Health of Indonesia. Haemoglobin data, demographic, and socioeconomic data were derived from the Basic Health Research 2013, and ferritin (Fe) and CRP data used stored serum samples collected in 2013 and analyzed in 2016. The results of this study found that the prevalence of anaemia among WRA in Indonesia is 11%, ID 14%, and AID 9%. Significant factors influencing health conditions include BMI, marital status, family size, malaria, and ARI. Individuals with overweight or obesity have a lower chance of experiencing anaemia, ID, and IDA compared to those who are thin, while individuals who are divorced have a higher risk than those who are unmarried. Additionally, individuals affected by malaria or ARI also have a higher risk of experiencing anaemia. Consumption of animal protein and education also emerges as significant factors affecting ID conditions. Although the model using Multinomial Logistic Regression shows higher accuracy than the binary model, both still have weaknesses in identifying cases of anaemia, ID, and IDA with low sensitivity. Model evaluation indicates that despite proficiency in recognizing normal cases, they still struggle to detect cases of anaemia, ID, and IDA.

Downloads

Download data is not yet available.

References

Aidi, M. N., Efriwati, E., Suryanty, S., Rahman, L. O. A., Nurfadilah, K., & Ernawati, F. (2022). Identifying the Characteristics of Pregnant Women with Inflammation/Infection in Indonesia. Jurnal Gizi Dan Pangan, 17(3), 177–186. https://doi.org/10.25182/jgp.2022.17.3.177-186 DOI: https://doi.org/10.25182/jgp.2022.17.3.177-186

Aidi, M. N., Ernawati, F., Efriwati, Nurjanah, N., Rachmawati, R., Julianti, E. D., Sundari, D., Retiaty, F., Fitrianto, A., Nurfadilah, K., & Arifin, A. Y. (2022). Spatial distribution and identifying biochemical factors affecting haemoglobin levels among women of reproductive age for each province in Indonesia: A geospatial analysis. Geospatial Health, 17(2). https://doi.org/10.4081/gh.2022.1118 DOI: https://doi.org/10.4081/gh.2022.1118

AIDI, M. N., & MAULANA, S. I. (2020). A SPATIAL MODEL FOR PREDICTING THE OCCURENCES OF DEFORESTATION IN THE ISLAND OF SUMATRA, INDONESIA. Journal of Sustainability Science and Management, 15(6). https://doi.org/10.46754/jbsd.2020.08.007 DOI: https://doi.org/10.46754/jbsd.2020.08.007

Akbar, M. I., Rinaningsih, Y. S., Ekawaty, R., Batiari, N. M. P., Abdussalam, I., Suharyanto, E., Widiana, D., & Sulistyowati, Y. (2020). Pelaksanaan Program Keping Emas Pada Ibu Hamil Kekurangan Energi Kalori dan Anemia Di Desa Kronjo Tahun 2019. Jurnal Bidang Ilmu Kesehatan, 10(1), 108–121. https://doi.org/10.52643/jbik.v10i1.866 DOI: https://doi.org/10.52643/jbik.v10i1.866

Astriana, W. (2017). Kejadian Anemia pada Ibu Hamil Ditinjau dari Paritas dan Usia THE OCCURRENCE OF ANEMIA IN PREGNANT WOMEN BASED ON PARITY AND AGE. Jurnal Aisyah : Jurnal Ilmu Kesehatan, 2(2), 123–130. http://ejournal.stikesaisyah.ac.id/index.php/jika/ DOI: https://doi.org/10.30604/jika.v2i2.57

Atti, A., Sunarlim, B., Utami, ;, & Syafitri, D. (2008). ANALISIS FAKTOR RISIKO PENYAKIT JANTUNG KORONER MENGGUNAKAN METODE REGRESI LOGISTIK DAN CHAID. In Jurnal Mat Stat (Vol. 8, Issue 2).

Ayensu, J., Annan, R., Lutterodt, H., Edusei, A., & Peng, L. S. (2020). Prevalence of anaemia and low intake of dietary nutrients in pregnant women living in rural and urban areas in the Ashanti region of Ghana. PLoS ONE, 15(1), 1–15. https://doi.org/10.1371/journal.pone.0226026 DOI: https://doi.org/10.1371/journal.pone.0226026

Darshan, D., Frazer, D. M., Wilkins, S. J., & Anderson, G. J. (2010). Severe iron deficiency blunts the response of the iron regulatory gene Hamp and pro-inflammatory cytokines to lipopolysaccharide. Haematologica, 95(10). https://doi.org/10.3324/haematol.2010.022426 DOI: https://doi.org/10.3324/haematol.2010.022426

Departemen Kesehatan Republik Indonesia. (2007). Riset Kesehatan Dasar 2007. Laporan Nasional 2007, 1–384. http://kesga.kemkes.go.id/images/pedoman/Riskesdas 2007 Nasional.pdf

Dinas Kesehatan Republik Indonesia. (2013). Riset Kesehatan Dasar. Diabetes Mellitus, 87–90. https://doi.org/1 Desember 2013

Ernawati, F., Octaria, Y., & Khomsan, A. (2018). Peluang Generasi Bangsa yang Terabaikan Anemia Baduta. In Journal of Materials Processing Technology (Vol. 1, Issue 1).

Ernawati, F., Sandjaja, N., & Soekatri, M. (2013). Status Vitamin a Dan Zat Besi Anak Indonesia. Gizi Indonesia, 36(2), 123. https://doi.org/10.36457/gizindo.v36i2.140 DOI: https://doi.org/10.36457/gizindo.v36i2.140

Ernawati, F., Syauqy, A., Arifin, A. Y., Soekatri, M. Y. E., & Sandjaja, S. (2021). Micronutrient deficiencies and stunting were associated with socioeconomic status in indonesian children aged 6–59 months. Nutrients, 13(6). https://doi.org/10.3390/nu13061802 DOI: https://doi.org/10.3390/nu13061802

Harding, K. L., Aguayo, V. M., Namirembe, G., & Webb, P. (2018). Determinants of anemia among women and children in Nepal and Pakistan: An analysis of recent national survey data. Maternal and Child Nutrition, 14(November 2016), 1–13. https://doi.org/10.1111/mcn.12478 DOI: https://doi.org/10.1111/mcn.12478

Kemenkes RI. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan RI, 53(9), 1689–1699.

Kinyoki, D., Osgood-Zimmerman, A. E., Bhattacharjee, N. V., Schaeffer, L. E., Lazzar-Atwood, A., Lu, D., Ewald, S. B., Donkers, K. M., Letourneau, I. D., Collison, M., Schipp, M. F., Abajobir, A., Abbasi, S., Abbasi, N., Abbasifard, M., Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A., … Hay, S. I. (2021). Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018. Nature Medicine, 27(10), 1761–1782. https://doi.org/10.1038/s41591-021-01498-0 DOI: https://doi.org/10.1038/s41591-021-01498-0

Kutner, M., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models- 4th edition. In McGraw-Hill Irwin.

Manikam, R. M., Angesti, A. N., & Mardiyah, S. (2022). FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN ANEMIA PADA SANTRIWATI DI KOTA BEKASI. Jurnal Sains Kesehatan, 29(2). https://doi.org/10.37638/jsk.29.2.1-11 DOI: https://doi.org/10.37638/jsk.29.2.1-11

Marrom ND, Rokach L, Shmilovici A. 2010. Using the confusion matrix for improving ensemble classifiers. IEEE Explore. 978(1):4244-8682

Navin M, Panjaka R. 2016. Performance analysis of text classification algorithms using confusion matrix. International Journal of Engineering and Techmical Research. 6(4):2454-4698.

Nugraheni, A., Prihatini, M., Yuriestia Arifin, A., Retiaty, F., Ernawati, F., Biomedis danTeknologi Dasar Kesehatan Badan Litbang Kesehatan Jalan Percetakan Negara Nomor, P., Pusat, J., & Jakarta, D. (2021). PROFIL ZAT GIZI MIKRO (ZAT BESI, ZINK, VITAMIN A) DAN KADAR HEMOGLOBIN PADA IBU HAMIL Micronutrient Profile (Iron, Zinc, Vitamin A) and Hemoglobin Level in Pregnant Women. Mgmi, 12(2), 119–130. DOI: https://doi.org/10.22435/mgmi.v12i2.4648

Pangestika, M. P., Sumertajaya, I. M., & Rizki, A. (2021). Penerapan Synthetic Minority Oversampling Technique pada Pemodelan Regresi Logistik Biner terhadap Keberhasilan Studi Mahasiswa Program Magister IPB. Xplore: Journal of Statistics, 10(2), 152–166. https://doi.org/10.29244/xplore.v10i2.238 DOI: https://doi.org/10.29244/xplore.v10i2.238

Pasalina, P. E., Jurnalis, Y. D., & Ariadi, A. (2019). HUBUNGAN INDEKS MASSA TUBUH DENGAN KEJADIAN ANEMIA PADA WANITA USIA SUBUR PRANIKAH. Jurnal Ilmu Keperawatan Dan Kebidanan, 10(1). https://doi.org/10.26751/jikk.v10i1.584 DOI: https://doi.org/10.26751/jikk.v10i1.584

Sandjaja, S., Budiman, B., Harahap, H., Ernawati, F., Soekatri, M., Widodo, Y., Sumedi, E., Rustan, E., Sofia, G., Syarief, S. N., & Khouw, I. (2013). Food consumption and nutritional and biochemical status of 0·5-12-year-old Indonesian children: The SEANUTS study. British Journal of Nutrition, 110(SUPPL.3). https://doi.org/10.1017/S0007114513002109 DOI: https://doi.org/10.1017/S0007114513002109

Setyorini, E., Anwar, F., Riyadi, H., & Khomsan, A. (2019). Faktor Risiko Anemia pada Wanita Pemetik Teh. Media Kesehatan Masyarakat Indonesia, 15(3). https://doi.org/10.30597/mkmi.v15i3.7008 DOI: https://doi.org/10.30597/mkmi.v15i3.7008

Silvana, S. (2008). Pemodelan Usia Menarche dengan Regresi Logistik Ordinal dan Metode CHAID pada Siswi SMP di Kota. (Tesis) Program Studi Statistika, IPB.

Sudikno, N., Jus’at, I., Sandjaja, N., & Ernawati, F. (2014). Faktor Risiko Anemia Pada Ibu Menyusui Di Rumah Tangga Miskin. Gizi Indonesia, 37(1), 71. https://doi.org/10.36457/gizindo.v37i1.152 DOI: https://doi.org/10.36457/gizindo.v37i1.152

White, N. J. (2018). Anaemia and malaria. In Malaria Journal (Vol. 17, Issue 1). https://doi.org/10.1186/s12936-018-2509-9 DOI: https://doi.org/10.1186/s12936-018-2509-9

World Health Organization. (2015). WHO | Iron deficiency anaemia: assessment, prevention and control. Who.

Downloads

Published

22-04-2024

Issue

Section

Research Articles

How to Cite

[1]
Shaly Wanda Hamzah, Muhammad Nur Aidi, I Made Sumertajaya, and Fitrah Ernawati, “Risk Factors for Anaemia, Iron Deficiency, and Iron Deficiency Anaemia in Women of Reproductive Age Using Logistic Regression”, Int J Sci Res Sci Eng Technol, vol. 11, no. 2, pp. 398–408, Apr. 2024, doi: 10.32628/IJSRSET2411260.

Similar Articles

1-10 of 64

You may also start an advanced similarity search for this article.