An Introduction to Cosmological Models in General Relativity in Self Creation Theory of Gravitation
DOI:
https://doi.org/10.32628/IJSRSET24113141Keywords:
General Theory, Principle of Equivalence, Mach’s Principle, Cariolis Field, Cosmology, Cosmological Models, VectorsAbstract
We have presented an introduction to Cosmological Models in General Relativity in Self Creation theory of Gravitation various definitions of basic terminology is given. Many principles used in General Relativity are also explained.
Downloads
References
Adhav, K.S., Bansod, A.S., Munde, S.L. and Nakwal, R.G., Bianchi type-VI0 cosmological models with anisotropic dark energy, Astrophys. Space.Sci, 332, 497, 2011. DOI: https://doi.org/10.1007/s10509-010-0519-3
Bali, R. and Ali, M., Magnetized cylindrically symmetric universe in general relativity, Pramana, 47, 25, 1996. DOI: https://doi.org/10.1007/BF02847163
Beesham, A., Vacuum friedmann cosmology based on Lyra's manifold, Astrophys. Space Sci., 127, 189, 1986. DOI: https://doi.org/10.1007/BF00637776
Behar, S.and Carmeli, M., Cosmological Relativity: A New Theory of Cosmology, Int. J. Theor. Phys., 39, 1375, 2002. DOI: https://doi.org/10.1023/A:1003651222960
Bennett, C.L. et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: The Angular Power Spectrum, Astrophys. J. Suppl., 148, 2003. DOI: https://doi.org/10.1086/377252
Bergmann, O. and Leipnik, R., Space-time structure of a static spherically symmetric scalar field, Phys. Rev., 107, 1157, 1957. DOI: https://doi.org/10.1103/PhysRev.107.1157
Bergmann, Comments on the scalar-tensor theory, Int. J. of Theor. Phys., 1, 25-36, 1968. DOI: https://doi.org/10.1007/BF00668828
Bertolami, O., Time-dependent cosmological term, Nuovo Cimento, 93, 36, 1986. DOI: https://doi.org/10.1007/BF02728301
Bhamra, K. S., A cosmological model of class one in Lyra's manifold, Austr.
J. Phys., 27, 541, 1974. DOI: https://doi.org/10.1071/PH740541
Brahmachary, R. L., A class of exact solutions of the combined gravitational and electro-magnetic field equations of general relativity, Nuovo Cimento, 5,1250, 1957. DOI: https://doi.org/10.1007/BF02785505
Brans, C.H. and Dicke, R.H., Mach's principle and a relativistic theory of gravitation, Phys. Rev., 124, 925, 1961. DOI: https://doi.org/10.1103/PhysRev.124.925
Carmeli, M. and Kuzmenko, T., Value of the cosmological constant in the cosmological relativity theory, Int. J. Theor. Phys., 41, 131, 2002. DOI: https://doi.org/10.1063/1.1419571
Carvalho, J. C., Unified description of the early universe, Int. J. Theor. Phys., 35, 2019, 1996. DOI: https://doi.org/10.1007/BF02302426
Copeland, E. J., Sami, M. and T Sujikawa, S., Dynamics of dark energy, Int.
J. of Mod. Phys., D15, 1753, 2006. DOI: https://doi.org/10.1142/S021827180600942X
Dolgov, A. D., Higher spin fields and the problem of the cosmological constant, Phys. Rev., D55, 5881, 1997. DOI: https://doi.org/10.1103/PhysRevD.55.5881
Dolgov, A. D. Sazhin, M. V. and Zeldovich, Ya. B., Basics of modern cosmology Basics of Modern Cosmology (Editions Frontiers, 1990).
Farooq, M.U., Jamil, M.and Debnath, U., Dynamics of interacting phantom and quintessence dark energies, Astrophys and Space Sci., 334, 2, 2011. DOI: https://doi.org/10.1007/s10509-011-0721-y
Garnavich, P. M. et al., Supernova limits on the cosmic equation of state, Astrophys. J., 493, L53, 1998a, Hi-Z Supernova Team Collaboration (astro- ph/9710123); Astrophys. J. 509, 74 (1998b); Hi-Z Supernova Team Collaboration (astro-ph/9806396).
Halford, W. D., Cosmological theory based on Lyra's geometry, Austr. J. Phys., 23, 863, 1970. DOI: https://doi.org/10.1071/PH700863
Hoyle, F. and Narlikar, J.V., Electrodynamics of direct interparticle action. I. The quantum mechanical response of the universe, Elsevier, 54, 207-239, 1969. DOI: https://doi.org/10.1016/0003-4916(69)90151-1
Hoyle, F. and Narlikar, J. V., Mach's principle and the creation of matter, Proc. Roy. Soc. London Ser., A273, 1, 1963. DOI: https://doi.org/10.1098/rspa.1963.0072
Hoyle, F., Mon. Not. Roy. Astro. Soc. 108, 252, 1948. DOI: https://doi.org/10.1016/S0140-6736(48)91750-4
Jamil, M. A. Rashid, and A. Qadir, Charged black holes in phantom cosmology Eur. Phys.J., C58, 325, 2008. DOI: https://doi.org/10.1140/epjc/s10052-008-0761-9
Karade, T. M. and Borkar, S. M., Thermodynamic equilibrium of a gravitating sphere in Lyra's geometry, Gen. Rel. Grav., 9, 431, 1978. DOI: https://doi.org/10.1007/BF00759843
Kalyanshetti, S. B. and Waghmode, B. B., A static cosmological model in Einstein-Cartan theory, Gen. Rel. Grav., 14, 823, 1982. DOI: https://doi.org/10.1007/BF00756799
Krauss, L.M. and Turner, M.S., The cosmological constant is back, General Relativity and Gravitation, 27, 11, 1137-1144, 1995. DOI: https://doi.org/10.1007/BF02108229
Li, M.et al., Interacting model of new agegraphic dark energy: observational constraints and age problem, arXiv: 0801.1407 [astro-ph], 2011.
Linde, A.D., Is the Lee constant a cosmological constant? ZhETF Pis. Red., 19, 320-322, 1974.
Lichnerowicz, A., Relativistic hydrodynamics and Magnetohydrodynamics, Benjamin, Newyork, 13, 1967.
Lyra, G., Über eine modifikation der Riemannschen geometrie Math. Z. 54, 52, 1951. DOI: https://doi.org/10.1007/BF01175135
Padmanabhan, T., Cosmological constant—the weight of the vacuum, hep- th/0212290, 2003.
Pecci, RD. and Quinn, H., Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev., D16, 1791, 1979. DOI: https://doi.org/10.1103/PhysRevD.16.1791
Perlmutter, S. et al., Astrophys. J., 483, 565, 1997, Supernova Cosmology Project Collaboration (astro-ph/9608192); Nature 391, 51, 1998, Supernova Cosmology Project Collaboration (astro-ph/9712212); Astrophys. J. 517, 565 (1999), Project Collaboration (astro-ph/9608192).
Perlmutter, S. et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J., 517, 565, 1999. DOI: https://doi.org/10.1086/307221
Perlmutter, S. et al., Discovery of a supernova explosion at half the age of the Universe, Nature, 391, 51, 1998. DOI: https://doi.org/10.1038/34124
Pradhan, A., Amirhashchi, H. and Zainuddin, H., Exact solution of perfect fluid massive string cosmology in Bianchi type III space-time with decaying vacuum energy density Λ, Astrophys Space Sci., 331, 679- 687 (2011). DOI: https://doi.org/10.1007/s10509-010-0469-9
Pradhan, A.and Vishwakarma, A. K., A new class of LRS Bianchi type-I cosmological models in Lyra geometry, Journal of Geometry and Physics, 49, no. 3-4, 332–342, 2004. DOI: https://doi.org/10.1016/S0393-0440(03)00105-0
Ram, S. and Singh, C. P., Early universe in self-creation cosmology, Astrophys. Space Sci., 257, 123, 1998. DOI: https://doi.org/10.1023/A:1001140931771
Ratra, B. and Peebles, P. J. E., Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev., D37, 3406, 1988. DOI: https://doi.org/10.1103/PhysRevD.37.3406
Reddy, D. R. K. and Venkateswarlu, R., Birkhoff-type theorem in the scale- covariant theory of gravitation, Astrophys. Space Sci., 136, 191, 1987. DOI: https://doi.org/10.1007/BF00661267
Reddy, D. R. K. and Venkateswarlu, R., Bianchi type-VI 0 models in self- creation cosmology, Astrophys. Space Sci., 155, 135, 1989. DOI: https://doi.org/10.1007/BF00645214
Reddy, D. R. K., Vacuum friedmann model in self-creation cosmology, Astrophys. Space Sci., 133, 189, 1987a. DOI: https://doi.org/10.1007/BF00637431
Reddy, D. R. K., Bianchi type-I universe filled with disordered radiation in self-creation cosmology, Astrophys. Space Sci., 133, 389, 1987b. DOI: https://doi.org/10.1007/BF00642496
Reddy, D. R. K., Avadhanulu, B. and Venkateswarlu, R., Birkhoff-type theorem for electromagnetic fields in self-creation cosmology, Astrophys. Space Sci., 134, 201, 1987. DOI: https://doi.org/10.1007/BF00636469
Reddy¸ D. R. K. and Innaiah, P., A plane symmetric cosmological model in Lyra manifold, Astrophys. Space Sci., 123, 49, 1986. DOI: https://doi.org/10.1007/BF00649122
Reddy, D. R. K., Plane symmetric string cosmological models in self-creation theory of gravitation, Astrophys Space Sci., 305, 139-141, 2006. DOI: https://doi.org/10.1007/s10509-006-9051-x
Riess, A. G. et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009; Hi- Z Supernova Team Collaboration (astro-ph/9805201), 1998. DOI: https://doi.org/10.1086/300499
Rosen, N. and Einstein, A., The particle problem in the general theory of relativity, Phys. Rev., 48, 73, 1935. DOI: https://doi.org/10.1103/PhysRev.48.73
Ross, D.K., Scalar-tensor theory of gravitation, Phys. Rev., D5, 284, 1972. DOI: https://doi.org/10.1103/PhysRevD.5.284
Sahni, V.and Starobinsky, A., The case for a positive cosmological Λ-term, Int. J. Mod. Phys., D9, 373, 2000; gr-qc/9904398, 2000. DOI: https://doi.org/10.1142/S0218271800000542
Sami, M. et al., The fate of (phantom) dark energy universe with string curvature corrections, Phys. Lett., B619, 193, 2005. DOI: https://doi.org/10.1016/j.physletb.2005.06.017
Schmidt, B. P. et al., The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae, Astrophys. J. 507, 46, Hi-Z Supernova Team Collaboration (astro- ph/9805200), 1998. DOI: https://doi.org/10.1086/306308
Schmidt, G., Greinter, W., Heinz, U. and Muller, B., Stability of massive objects in a new scalar-tensor theory, Phys. Rev., D24, 1484, 1981. DOI: https://doi.org/10.1103/PhysRevD.24.1484
Sen, D. K. and Dunn, K. A., A Scalar‐Tensor Theory of Gravitation in a Modified Riemannian Manifold, J. Math. Phys., 12, 578, 1971. DOI: https://doi.org/10.1063/1.1665623
Sen, D. K., A static cosmological model, Z. Phys., 149, 311, 1957. DOI: https://doi.org/10.1007/BF01333146
Setare, M.R. and Wagonor, E.C., The cosmological dynamics of interacting holographic dark energy model, arXiv: 0704.2070 [hep-th], 2011.
Singh, G. P. and Desikan, K., A new class of cosmological models in Lyra geometry, Pramana, 49, 205, 1997. DOI: https://doi.org/10.1007/BF02845856
Singh, R. T. and Deo, S., Zero-mass scalar field interactions in the Robertson-Walker universe, Acta Physica Hungarica, 59(3), 321-325, 1986. DOI: https://doi.org/10.1007/BF03053778
Singh, T. and Singh, G. P., Lyra's geometry and cosmology: a review, Fortschr. Phys., 41, 737, 1993. DOI: https://doi.org/10.1002/prop.19930410804
Soleng, H. H., Self-creation cosmological solutions, Astrophys. Space Sci., 139, 13, 1987. DOI: https://doi.org/10.1007/BF00643809
Soleng, H. H., Cosmologies based on Lyra's geometry, Gen. Rel. Grav., 19, 1213, 1987. DOI: https://doi.org/10.1007/BF00759100
Vilenkin, A., Cosmic strings and other topological defects, Phys. Rep., 121, 263, 1985. DOI: https://doi.org/10.1016/0370-1573(85)90033-X
Vishwakarma, R. G., A study of angular size-redshift relation for models in which Λ decays as the energy density Class, Quant. Grav., 17, 3833, 2000. DOI: https://doi.org/10.1088/0264-9381/17/18/317
Weinberg, S. and Wilczek. F., Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett., 40, 223, 1978, Phys. Rev. Lett., 40 279, 1978. DOI: https://doi.org/10.1103/PhysRevLett.40.223
Weyl, H., S.-B. Preuss. Akad. Wiss., Berlin, p. 465, 1918.
Zeldovich, Ya. B., JETP Lett., 6, 316-17(1967).
Zeldovich, Ya. B., Ruzmainkin, A. A. and Sokoloff, D. D., Magnetic field in Astrophysics, New York, Gordon and Breach, 1993.
Zimdahl, W. and Pavon, D., Interacting holographic dark energy Quantum.
Gravit., 24, 5461, 2007. DOI: https://doi.org/10.1088/0264-9381/24/22/011
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.