An Introduction to Cosmological Models in General Relativity in Self Creation Theory of Gravitation

Authors

  • Nikhil Jain Department of Mathematics, Govt. Women Engineering College Ajmer, India Author

DOI:

https://doi.org/10.32628/IJSRSET24113141

Keywords:

General Theory, Principle of Equivalence, Mach’s Principle, Cariolis Field, Cosmology, Cosmological Models, Vectors

Abstract

We have presented an introduction to Cosmological Models in General Relativity in Self Creation theory of Gravitation various definitions of basic terminology is given. Many principles used in General Relativity are also explained.

Downloads

Download data is not yet available.

References

Adhav, K.S., Bansod, A.S., Munde, S.L. and Nakwal, R.G., Bianchi type-VI0 cosmological models with anisotropic dark energy, Astrophys. Space.Sci, 332, 497, 2011.

Bali, R. and Ali, M., Magnetized cylindrically symmetric universe in general relativity, Pramana, 47, 25, 1996.

Beesham, A., Vacuum friedmann cosmology based on Lyra's manifold, Astrophys. Space Sci., 127, 189, 1986.

Behar, S.and Carmeli, M., Cosmological Relativity: A New Theory of Cosmology, Int. J. Theor. Phys., 39, 1375, 2002.

Bennett, C.L. et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: The Angular Power Spectrum, Astrophys. J. Suppl., 148, 2003.

Bergmann, O. and Leipnik, R., Space-time structure of a static spherically symmetric scalar field, Phys. Rev., 107, 1157, 1957.

Bergmann, Comments on the scalar-tensor theory, Int. J. of Theor. Phys., 1, 25-36, 1968.

Bertolami, O., Time-dependent cosmological term, Nuovo Cimento, 93, 36, 1986.

Bhamra, K. S., A cosmological model of class one in Lyra's manifold, Austr.

J. Phys., 27, 541, 1974.

Brahmachary, R. L., A class of exact solutions of the combined gravitational and electro-magnetic field equations of general relativity, Nuovo Cimento, 5,1250, 1957.

Brans, C.H. and Dicke, R.H., Mach's principle and a relativistic theory of gravitation, Phys. Rev., 124, 925, 1961.

Carmeli, M. and Kuzmenko, T., Value of the cosmological constant in the cosmological relativity theory, Int. J. Theor. Phys., 41, 131, 2002.

Carvalho, J. C., Unified description of the early universe, Int. J. Theor. Phys., 35, 2019, 1996.

Copeland, E. J., Sami, M. and T Sujikawa, S., Dynamics of dark energy, Int.

J. of Mod. Phys., D15, 1753, 2006.

Dolgov, A. D., Higher spin fields and the problem of the cosmological constant, Phys. Rev., D55, 5881, 1997.

Dolgov, A. D. Sazhin, M. V. and Zeldovich, Ya. B., Basics of modern cosmology Basics of Modern Cosmology (Editions Frontiers, 1990).

Farooq, M.U., Jamil, M.and Debnath, U., Dynamics of interacting phantom and quintessence dark energies, Astrophys and Space Sci., 334, 2, 2011.

Garnavich, P. M. et al., Supernova limits on the cosmic equation of state, Astrophys. J., 493, L53, 1998a, Hi-Z Supernova Team Collaboration (astro- ph/9710123); Astrophys. J. 509, 74 (1998b); Hi-Z Supernova Team Collaboration (astro-ph/9806396).

Halford, W. D., Cosmological theory based on Lyra's geometry, Austr. J. Phys., 23, 863, 1970.

Hoyle, F. and Narlikar, J.V., Electrodynamics of direct interparticle action. I. The quantum mechanical response of the universe, Elsevier, 54, 207-239, 1969.

Hoyle, F. and Narlikar, J. V., Mach's principle and the creation of matter, Proc. Roy. Soc. London Ser., A273, 1, 1963.

Hoyle, F., Mon. Not. Roy. Astro. Soc. 108, 252, 1948.

Jamil, M. A. Rashid, and A. Qadir, Charged black holes in phantom cosmology Eur. Phys.J., C58, 325, 2008.

Karade, T. M. and Borkar, S. M., Thermodynamic equilibrium of a gravitating sphere in Lyra's geometry, Gen. Rel. Grav., 9, 431, 1978.

Kalyanshetti, S. B. and Waghmode, B. B., A static cosmological model in Einstein-Cartan theory, Gen. Rel. Grav., 14, 823, 1982.

Krauss, L.M. and Turner, M.S., The cosmological constant is back, General Relativity and Gravitation, 27, 11, 1137-1144, 1995.

Li, M.et al., Interacting model of new agegraphic dark energy: observational constraints and age problem, arXiv: 0801.1407 [astro-ph], 2011.

Linde, A.D., Is the Lee constant a cosmological constant? ZhETF Pis. Red., 19, 320-322, 1974.

Lichnerowicz, A., Relativistic hydrodynamics and Magnetohydrodynamics, Benjamin, Newyork, 13, 1967.

Lyra, G., Über eine modifikation der Riemannschen geometrie Math. Z. 54, 52, 1951.

Padmanabhan, T., Cosmological constant—the weight of the vacuum, hep- th/0212290, 2003.

Pecci, RD. and Quinn, H., Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev., D16, 1791, 1979.

Perlmutter, S. et al., Astrophys. J., 483, 565, 1997, Supernova Cosmology Project Collaboration (astro-ph/9608192); Nature 391, 51, 1998, Supernova Cosmology Project Collaboration (astro-ph/9712212); Astrophys. J. 517, 565 (1999), Project Collaboration (astro-ph/9608192).

Perlmutter, S. et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J., 517, 565, 1999.

Perlmutter, S. et al., Discovery of a supernova explosion at half the age of the Universe, Nature, 391, 51, 1998.

Pradhan, A., Amirhashchi, H. and Zainuddin, H., Exact solution of perfect fluid massive string cosmology in Bianchi type III space-time with decaying vacuum energy density Λ, Astrophys Space Sci., 331, 679- 687 (2011).

Pradhan, A.and Vishwakarma, A. K., A new class of LRS Bianchi type-I cosmological models in Lyra geometry, Journal of Geometry and Physics, 49, no. 3-4, 332–342, 2004.

Ram, S. and Singh, C. P., Early universe in self-creation cosmology, Astrophys. Space Sci., 257, 123, 1998.

Ratra, B. and Peebles, P. J. E., Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev., D37, 3406, 1988.

Reddy, D. R. K. and Venkateswarlu, R., Birkhoff-type theorem in the scale- covariant theory of gravitation, Astrophys. Space Sci., 136, 191, 1987.

Reddy, D. R. K. and Venkateswarlu, R., Bianchi type-VI 0 models in self- creation cosmology, Astrophys. Space Sci., 155, 135, 1989.

Reddy, D. R. K., Vacuum friedmann model in self-creation cosmology, Astrophys. Space Sci., 133, 189, 1987a.

Reddy, D. R. K., Bianchi type-I universe filled with disordered radiation in self-creation cosmology, Astrophys. Space Sci., 133, 389, 1987b.

Reddy, D. R. K., Avadhanulu, B. and Venkateswarlu, R., Birkhoff-type theorem for electromagnetic fields in self-creation cosmology, Astrophys. Space Sci., 134, 201, 1987.

Reddy¸ D. R. K. and Innaiah, P., A plane symmetric cosmological model in Lyra manifold, Astrophys. Space Sci., 123, 49, 1986.

Reddy, D. R. K., Plane symmetric string cosmological models in self-creation theory of gravitation, Astrophys Space Sci., 305, 139-141, 2006.

Riess, A. G. et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009; Hi- Z Supernova Team Collaboration (astro-ph/9805201), 1998.

Rosen, N. and Einstein, A., The particle problem in the general theory of relativity, Phys. Rev., 48, 73, 1935.

Ross, D.K., Scalar-tensor theory of gravitation, Phys. Rev., D5, 284, 1972.

Sahni, V.and Starobinsky, A., The case for a positive cosmological Λ-term, Int. J. Mod. Phys., D9, 373, 2000; gr-qc/9904398, 2000.

Sami, M. et al., The fate of (phantom) dark energy universe with string curvature corrections, Phys. Lett., B619, 193, 2005.

Schmidt, B. P. et al., The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae, Astrophys. J. 507, 46, Hi-Z Supernova Team Collaboration (astro- ph/9805200), 1998.

Schmidt, G., Greinter, W., Heinz, U. and Muller, B., Stability of massive objects in a new scalar-tensor theory, Phys. Rev., D24, 1484, 1981.

Sen, D. K. and Dunn, K. A., A Scalar‐Tensor Theory of Gravitation in a Modified Riemannian Manifold, J. Math. Phys., 12, 578, 1971.

Sen, D. K., A static cosmological model, Z. Phys., 149, 311, 1957.

Setare, M.R. and Wagonor, E.C., The cosmological dynamics of interacting holographic dark energy model, arXiv: 0704.2070 [hep-th], 2011.

Singh, G. P. and Desikan, K., A new class of cosmological models in Lyra geometry, Pramana, 49, 205, 1997.

Singh, R. T. and Deo, S., Zero-mass scalar field interactions in the Robertson-Walker universe, Acta Physica Hungarica, 59(3), 321-325, 1986.

Singh, T. and Singh, G. P., Lyra's geometry and cosmology: a review, Fortschr. Phys., 41, 737, 1993.

Soleng, H. H., Self-creation cosmological solutions, Astrophys. Space Sci., 139, 13, 1987.

Soleng, H. H., Cosmologies based on Lyra's geometry, Gen. Rel. Grav., 19, 1213, 1987.

Vilenkin, A., Cosmic strings and other topological defects, Phys. Rep., 121, 263, 1985.

Vishwakarma, R. G., A study of angular size-redshift relation for models in which Λ decays as the energy density Class, Quant. Grav., 17, 3833, 2000.

Weinberg, S. and Wilczek. F., Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett., 40, 223, 1978, Phys. Rev. Lett., 40 279, 1978.

Weyl, H., S.-B. Preuss. Akad. Wiss., Berlin, p. 465, 1918.

Zeldovich, Ya. B., JETP Lett., 6, 316-17(1967).

Zeldovich, Ya. B., Ruzmainkin, A. A. and Sokoloff, D. D., Magnetic field in Astrophysics, New York, Gordon and Breach, 1993.

Zimdahl, W. and Pavon, D., Interacting holographic dark energy Quantum.

Gravit., 24, 5461, 2007.

Downloads

Published

15-06-2024

Issue

Section

Research Articles

How to Cite

[1]
Nikhil Jain, “An Introduction to Cosmological Models in General Relativity in Self Creation Theory of Gravitation”, Int J Sci Res Sci Eng Technol, vol. 11, no. 3, pp. 337–346, Jun. 2024, doi: 10.32628/IJSRSET24113141.

Similar Articles

1-10 of 86

You may also start an advanced similarity search for this article.