An Introduction to Cosmological Models in General Relativity in Self Creation Theory of Gravitation

Authors

  • Nikhil Jain Department of Mathematics, Govt. Women Engineering College Ajmer, India Author

DOI:

https://doi.org/10.32628/IJSRSET24113141

Keywords:

General Theory, Principle of Equivalence, Mach’s Principle, Cariolis Field, Cosmology, Cosmological Models, Vectors

Abstract

We have presented an introduction to Cosmological Models in General Relativity in Self Creation theory of Gravitation various definitions of basic terminology is given. Many principles used in General Relativity are also explained.

Downloads

Download data is not yet available.

References

Adhav, K.S., Bansod, A.S., Munde, S.L. and Nakwal, R.G., Bianchi type-VI0 cosmological models with anisotropic dark energy, Astrophys. Space.Sci, 332, 497, 2011. DOI: https://doi.org/10.1007/s10509-010-0519-3

Bali, R. and Ali, M., Magnetized cylindrically symmetric universe in general relativity, Pramana, 47, 25, 1996. DOI: https://doi.org/10.1007/BF02847163

Beesham, A., Vacuum friedmann cosmology based on Lyra's manifold, Astrophys. Space Sci., 127, 189, 1986. DOI: https://doi.org/10.1007/BF00637776

Behar, S.and Carmeli, M., Cosmological Relativity: A New Theory of Cosmology, Int. J. Theor. Phys., 39, 1375, 2002. DOI: https://doi.org/10.1023/A:1003651222960

Bennett, C.L. et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: The Angular Power Spectrum, Astrophys. J. Suppl., 148, 2003. DOI: https://doi.org/10.1086/377252

Bergmann, O. and Leipnik, R., Space-time structure of a static spherically symmetric scalar field, Phys. Rev., 107, 1157, 1957. DOI: https://doi.org/10.1103/PhysRev.107.1157

Bergmann, Comments on the scalar-tensor theory, Int. J. of Theor. Phys., 1, 25-36, 1968. DOI: https://doi.org/10.1007/BF00668828

Bertolami, O., Time-dependent cosmological term, Nuovo Cimento, 93, 36, 1986. DOI: https://doi.org/10.1007/BF02728301

Bhamra, K. S., A cosmological model of class one in Lyra's manifold, Austr.

J. Phys., 27, 541, 1974. DOI: https://doi.org/10.1071/PH740541

Brahmachary, R. L., A class of exact solutions of the combined gravitational and electro-magnetic field equations of general relativity, Nuovo Cimento, 5,1250, 1957. DOI: https://doi.org/10.1007/BF02785505

Brans, C.H. and Dicke, R.H., Mach's principle and a relativistic theory of gravitation, Phys. Rev., 124, 925, 1961. DOI: https://doi.org/10.1103/PhysRev.124.925

Carmeli, M. and Kuzmenko, T., Value of the cosmological constant in the cosmological relativity theory, Int. J. Theor. Phys., 41, 131, 2002. DOI: https://doi.org/10.1063/1.1419571

Carvalho, J. C., Unified description of the early universe, Int. J. Theor. Phys., 35, 2019, 1996. DOI: https://doi.org/10.1007/BF02302426

Copeland, E. J., Sami, M. and T Sujikawa, S., Dynamics of dark energy, Int.

J. of Mod. Phys., D15, 1753, 2006. DOI: https://doi.org/10.1142/S021827180600942X

Dolgov, A. D., Higher spin fields and the problem of the cosmological constant, Phys. Rev., D55, 5881, 1997. DOI: https://doi.org/10.1103/PhysRevD.55.5881

Dolgov, A. D. Sazhin, M. V. and Zeldovich, Ya. B., Basics of modern cosmology Basics of Modern Cosmology (Editions Frontiers, 1990).

Farooq, M.U., Jamil, M.and Debnath, U., Dynamics of interacting phantom and quintessence dark energies, Astrophys and Space Sci., 334, 2, 2011. DOI: https://doi.org/10.1007/s10509-011-0721-y

Garnavich, P. M. et al., Supernova limits on the cosmic equation of state, Astrophys. J., 493, L53, 1998a, Hi-Z Supernova Team Collaboration (astro- ph/9710123); Astrophys. J. 509, 74 (1998b); Hi-Z Supernova Team Collaboration (astro-ph/9806396).

Halford, W. D., Cosmological theory based on Lyra's geometry, Austr. J. Phys., 23, 863, 1970. DOI: https://doi.org/10.1071/PH700863

Hoyle, F. and Narlikar, J.V., Electrodynamics of direct interparticle action. I. The quantum mechanical response of the universe, Elsevier, 54, 207-239, 1969. DOI: https://doi.org/10.1016/0003-4916(69)90151-1

Hoyle, F. and Narlikar, J. V., Mach's principle and the creation of matter, Proc. Roy. Soc. London Ser., A273, 1, 1963. DOI: https://doi.org/10.1098/rspa.1963.0072

Hoyle, F., Mon. Not. Roy. Astro. Soc. 108, 252, 1948. DOI: https://doi.org/10.1016/S0140-6736(48)91750-4

Jamil, M. A. Rashid, and A. Qadir, Charged black holes in phantom cosmology Eur. Phys.J., C58, 325, 2008. DOI: https://doi.org/10.1140/epjc/s10052-008-0761-9

Karade, T. M. and Borkar, S. M., Thermodynamic equilibrium of a gravitating sphere in Lyra's geometry, Gen. Rel. Grav., 9, 431, 1978. DOI: https://doi.org/10.1007/BF00759843

Kalyanshetti, S. B. and Waghmode, B. B., A static cosmological model in Einstein-Cartan theory, Gen. Rel. Grav., 14, 823, 1982. DOI: https://doi.org/10.1007/BF00756799

Krauss, L.M. and Turner, M.S., The cosmological constant is back, General Relativity and Gravitation, 27, 11, 1137-1144, 1995. DOI: https://doi.org/10.1007/BF02108229

Li, M.et al., Interacting model of new agegraphic dark energy: observational constraints and age problem, arXiv: 0801.1407 [astro-ph], 2011.

Linde, A.D., Is the Lee constant a cosmological constant? ZhETF Pis. Red., 19, 320-322, 1974.

Lichnerowicz, A., Relativistic hydrodynamics and Magnetohydrodynamics, Benjamin, Newyork, 13, 1967.

Lyra, G., Über eine modifikation der Riemannschen geometrie Math. Z. 54, 52, 1951. DOI: https://doi.org/10.1007/BF01175135

Padmanabhan, T., Cosmological constant—the weight of the vacuum, hep- th/0212290, 2003.

Pecci, RD. and Quinn, H., Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev., D16, 1791, 1979. DOI: https://doi.org/10.1103/PhysRevD.16.1791

Perlmutter, S. et al., Astrophys. J., 483, 565, 1997, Supernova Cosmology Project Collaboration (astro-ph/9608192); Nature 391, 51, 1998, Supernova Cosmology Project Collaboration (astro-ph/9712212); Astrophys. J. 517, 565 (1999), Project Collaboration (astro-ph/9608192).

Perlmutter, S. et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J., 517, 565, 1999. DOI: https://doi.org/10.1086/307221

Perlmutter, S. et al., Discovery of a supernova explosion at half the age of the Universe, Nature, 391, 51, 1998. DOI: https://doi.org/10.1038/34124

Pradhan, A., Amirhashchi, H. and Zainuddin, H., Exact solution of perfect fluid massive string cosmology in Bianchi type III space-time with decaying vacuum energy density Λ, Astrophys Space Sci., 331, 679- 687 (2011). DOI: https://doi.org/10.1007/s10509-010-0469-9

Pradhan, A.and Vishwakarma, A. K., A new class of LRS Bianchi type-I cosmological models in Lyra geometry, Journal of Geometry and Physics, 49, no. 3-4, 332–342, 2004. DOI: https://doi.org/10.1016/S0393-0440(03)00105-0

Ram, S. and Singh, C. P., Early universe in self-creation cosmology, Astrophys. Space Sci., 257, 123, 1998. DOI: https://doi.org/10.1023/A:1001140931771

Ratra, B. and Peebles, P. J. E., Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev., D37, 3406, 1988. DOI: https://doi.org/10.1103/PhysRevD.37.3406

Reddy, D. R. K. and Venkateswarlu, R., Birkhoff-type theorem in the scale- covariant theory of gravitation, Astrophys. Space Sci., 136, 191, 1987. DOI: https://doi.org/10.1007/BF00661267

Reddy, D. R. K. and Venkateswarlu, R., Bianchi type-VI 0 models in self- creation cosmology, Astrophys. Space Sci., 155, 135, 1989. DOI: https://doi.org/10.1007/BF00645214

Reddy, D. R. K., Vacuum friedmann model in self-creation cosmology, Astrophys. Space Sci., 133, 189, 1987a. DOI: https://doi.org/10.1007/BF00637431

Reddy, D. R. K., Bianchi type-I universe filled with disordered radiation in self-creation cosmology, Astrophys. Space Sci., 133, 389, 1987b. DOI: https://doi.org/10.1007/BF00642496

Reddy, D. R. K., Avadhanulu, B. and Venkateswarlu, R., Birkhoff-type theorem for electromagnetic fields in self-creation cosmology, Astrophys. Space Sci., 134, 201, 1987. DOI: https://doi.org/10.1007/BF00636469

Reddy¸ D. R. K. and Innaiah, P., A plane symmetric cosmological model in Lyra manifold, Astrophys. Space Sci., 123, 49, 1986. DOI: https://doi.org/10.1007/BF00649122

Reddy, D. R. K., Plane symmetric string cosmological models in self-creation theory of gravitation, Astrophys Space Sci., 305, 139-141, 2006. DOI: https://doi.org/10.1007/s10509-006-9051-x

Riess, A. G. et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009; Hi- Z Supernova Team Collaboration (astro-ph/9805201), 1998. DOI: https://doi.org/10.1086/300499

Rosen, N. and Einstein, A., The particle problem in the general theory of relativity, Phys. Rev., 48, 73, 1935. DOI: https://doi.org/10.1103/PhysRev.48.73

Ross, D.K., Scalar-tensor theory of gravitation, Phys. Rev., D5, 284, 1972. DOI: https://doi.org/10.1103/PhysRevD.5.284

Sahni, V.and Starobinsky, A., The case for a positive cosmological Λ-term, Int. J. Mod. Phys., D9, 373, 2000; gr-qc/9904398, 2000. DOI: https://doi.org/10.1142/S0218271800000542

Sami, M. et al., The fate of (phantom) dark energy universe with string curvature corrections, Phys. Lett., B619, 193, 2005. DOI: https://doi.org/10.1016/j.physletb.2005.06.017

Schmidt, B. P. et al., The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae, Astrophys. J. 507, 46, Hi-Z Supernova Team Collaboration (astro- ph/9805200), 1998. DOI: https://doi.org/10.1086/306308

Schmidt, G., Greinter, W., Heinz, U. and Muller, B., Stability of massive objects in a new scalar-tensor theory, Phys. Rev., D24, 1484, 1981. DOI: https://doi.org/10.1103/PhysRevD.24.1484

Sen, D. K. and Dunn, K. A., A Scalar‐Tensor Theory of Gravitation in a Modified Riemannian Manifold, J. Math. Phys., 12, 578, 1971. DOI: https://doi.org/10.1063/1.1665623

Sen, D. K., A static cosmological model, Z. Phys., 149, 311, 1957. DOI: https://doi.org/10.1007/BF01333146

Setare, M.R. and Wagonor, E.C., The cosmological dynamics of interacting holographic dark energy model, arXiv: 0704.2070 [hep-th], 2011.

Singh, G. P. and Desikan, K., A new class of cosmological models in Lyra geometry, Pramana, 49, 205, 1997. DOI: https://doi.org/10.1007/BF02845856

Singh, R. T. and Deo, S., Zero-mass scalar field interactions in the Robertson-Walker universe, Acta Physica Hungarica, 59(3), 321-325, 1986. DOI: https://doi.org/10.1007/BF03053778

Singh, T. and Singh, G. P., Lyra's geometry and cosmology: a review, Fortschr. Phys., 41, 737, 1993. DOI: https://doi.org/10.1002/prop.19930410804

Soleng, H. H., Self-creation cosmological solutions, Astrophys. Space Sci., 139, 13, 1987. DOI: https://doi.org/10.1007/BF00643809

Soleng, H. H., Cosmologies based on Lyra's geometry, Gen. Rel. Grav., 19, 1213, 1987. DOI: https://doi.org/10.1007/BF00759100

Vilenkin, A., Cosmic strings and other topological defects, Phys. Rep., 121, 263, 1985. DOI: https://doi.org/10.1016/0370-1573(85)90033-X

Vishwakarma, R. G., A study of angular size-redshift relation for models in which Λ decays as the energy density Class, Quant. Grav., 17, 3833, 2000. DOI: https://doi.org/10.1088/0264-9381/17/18/317

Weinberg, S. and Wilczek. F., Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett., 40, 223, 1978, Phys. Rev. Lett., 40 279, 1978. DOI: https://doi.org/10.1103/PhysRevLett.40.223

Weyl, H., S.-B. Preuss. Akad. Wiss., Berlin, p. 465, 1918.

Zeldovich, Ya. B., JETP Lett., 6, 316-17(1967).

Zeldovich, Ya. B., Ruzmainkin, A. A. and Sokoloff, D. D., Magnetic field in Astrophysics, New York, Gordon and Breach, 1993.

Zimdahl, W. and Pavon, D., Interacting holographic dark energy Quantum.

Gravit., 24, 5461, 2007. DOI: https://doi.org/10.1088/0264-9381/24/22/011

Downloads

Published

15-06-2024

Issue

Section

Research Articles

How to Cite

[1]
Nikhil Jain, “An Introduction to Cosmological Models in General Relativity in Self Creation Theory of Gravitation”, Int J Sci Res Sci Eng Technol, vol. 11, no. 3, pp. 337–346, Jun. 2024, doi: 10.32628/IJSRSET24113141.

Similar Articles

1-10 of 68

You may also start an advanced similarity search for this article.