The M-Estimator and S-Estimator in Robust Improved Geographically and Temporally Weighted Regression for Modelling GRDP in West Java, Indonesia

Authors

  • Tiya Wulandari Department of Statistics, IPB University, Bogor, West Java, Indonesia Author
  • Anang Kurnia Department of Statistics, IPB University, Bogor, West Java, Indonesia Author
  • Muhammad Nur Aidi Department of Statistics, IPB University, Bogor, West Java, Indonesia Author

DOI:

https://doi.org/10.32628/IJSRSET24113144

Keywords:

Spatial Heterogeneity, GTWR, Improved GTWR, Outlier, GDRB

Abstract

The success of development in a region in Indonesia can be measured by economic growth, especially in the financial sector using the Gross Regional Domestic Product (GRDP) growth rate. The GRDP figure at the Regency and City level in West Java is one of Indonesia's highest and most diverse. This is due to various factors, including the geographical location of West Java, which is directly adjacent to DKI Jakarta, which is the center of the national economy. Although classified as high, the diversity of GRDP values between regions in West Java needs attention to equalize economic growth. The diversity of GRDP values can be modeled by the Improved Geographically and Temporally Weighted Regression (I-GTWR) method by taking samples in 2018-2022. The I-GTWR modeling method considers the influence of spatial heterogeneity and spatial-temporal interaction, which has been proven to produce better results than the GTWR method in modeling GRDP in Central Java in 2011-2015. This study also adds M-estimators and S-estimators to improve the model's performance and make it robust to outliers. The explanatory variables we use are Regional Original Revenue, General Allocation Fund, Foreign Investment, Regional Minimum Wage, Domestic Investment, Poverty, Per-Capita Expenditure, and Number of Job Vacancies. The analysis shows that the Robust I-GTWR model, especially the M-estimator, produces better model performance than the I-GTWR model in modeling West Java GRDP. The coefficient of determination made by the Robust I-GTWR method using the M-estimator is 94.62% with a mean absolute deviation value of 0.1491 and an Akaike Information Criterion value of 110.4899.

Downloads

Download data is not yet available.

References

D. Damanik and M. Saragih, “Korupsi, Inflasi dan Pertumbuhan Ekonomi di ASEAN,” J. Ekuilnomi, vol. 5, no. 1, pp. 71–81, 2023, doi: 10.36985/ekuilnomi.v5i1.494. DOI: https://doi.org/10.36985/ekuilnomi.v5i1.494

Shaulim, “Pengaruh Hasil Produk Domestik Regional Bruto Terhadap Pertumbuhan Ekonomi (Studi Kasus : Kabupaten Bengkayang),” J. Ekombis, vol. 4, no. 2, pp. 151–157, 2022, [Online]. Available: http://jurnal.utu.ac.id/ekombis/article/view/1347

M. Al Karim, G. J. Utomo, and B. Fauziah, “Kualitas Hidup Dan Pertumbuhan Ekonomi, Studi Kasus Dki Jakarta Dan Daerah Penyangganya,” J. Pembang. Wil. Kota, vol. 15, no. 3, pp. 227–247, 2019, doi: 10.14710/pwk.v15i3.22287. DOI: https://doi.org/10.14710/pwk.v15i3.22287

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 2nd edition. New York, 1992.

D. O. Mahara and A. Fauzan, “Impacts of Human Development Index and Percentage of Total Population on Poverty using OLS and GWR models in Central Java, Indonesia,” EKSAKTA J. Sci. Data Anal., vol. 2, no. 2, pp. 142–154, 2021, doi: 10.20885/eksakta.vol2.iss2.art8. DOI: https://doi.org/10.20885/EKSAKTA.vol2.iss1.art17

A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression. 2002.

A. S. Fotheringham, R. Crespo, and J. Yao, “Geographical and Temporal Weighted Regression (GTWR),” J. Reg. Sci., pp. 431–452, 2015. DOI: https://doi.org/10.1111/gean.12071

B. Huang, B. Wu, and M. Barry, “Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices,” Int. J. Geogr. Inf. Sci., vol. 24, no. 3, pp. 383–401, Mar. 2010, doi: 10.1080/13658810802672469. DOI: https://doi.org/10.1080/13658810802672469

B. Wu, R. Li, and B. Huang, “A geographically and temporally weighted autoregressive model with application to housing prices,” Int. J. Geogr. Inf. Sci., vol. 28, no. 5, pp. 1186–1204, 2014, doi: 10.1080/13658816.2013.878463. DOI: https://doi.org/10.1080/13658816.2013.878463

Mi. Sholihin, A. M. Soleh, and A. Djuraidah, “Pengembangan Regresi Terboboti Geografis dan Temporal Menggunakan Interaksi Jarak Spasial-Temporal,” 2018.

A. Djuraidah, Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, Sosial dan Ekonomi, 1st ed. Bogor, Jawa Barat: IPB Press, 2020.

J. Liu et al., “A mixed geographically and temporallyweighted regression: Exploring spatial-temporal variations from global and local perspectives,” Entropy, vol. 19, no. 2, 2017, doi: 10.3390/e19020053. DOI: https://doi.org/10.3390/e19020053

D. M. Hawkins, Identification of Outliers. 1980. DOI: https://doi.org/10.1007/978-94-015-3994-4

C. Chen, “Statistics and Data Analysis Paper 265-27 Robust Regression and Outlier Detection with the ROBUSTREG Procedure,” Statistics (Ber)., no. September, 2002, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Robust+Regression+and+Outlier+Detection+with+the+ROBUSTREG+Procedure#0

Z. Putra, H. Wijayanto, and M. N. Aidi, “View of Robust Geographically and Temporally Weighted Regression Using S-estimator in Criminal Case in East Java Province,” Int. J. Sci. Basic Appl. Res., vol. 48, pp. 24–26, 2019, Accessed: May 16, 2023. [Online]. Available: https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/10330/5426

A. P. A. Pangesti, S. Sugito, and H. Yasin, “PEMODELAN REGRESI RIDGE ROBUST S,M, MM-ESTIMATOR DALAM PENANGANAN MULTIKOLINIERITAS DAN PENCILAN (Studi Kasus : Faktor-Faktor yang Mempengaruhi Kemiskinan di Jawa Tengah Tahun 2020),” J. Gaussian, vol. 10, no. 3, pp. 402–412, 2021, doi: 10.14710/j.gauss.v10i3.32799. DOI: https://doi.org/10.14710/j.gauss.v10i3.32799

P. Rousseeuw and V. Yohai, “Robust Regression By S estimators, Lecture Notes in Statistics No. 26,” Robust and nonlinear time series analysis, vol. 26. pp. 256–272, 1984. DOI: https://doi.org/10.1007/978-1-4615-7821-5_15

Sugiyono, “Metode Penelitian Kuantitatif Kualitatif dan R&D,” Bandung Alf. p. 143, 2011.

Downloads

Published

18-06-2024

Issue

Section

Research Articles

How to Cite

[1]
Tiya Wulandari, Anang Kurnia, and Muhammad Nur Aidi, “The M-Estimator and S-Estimator in Robust Improved Geographically and Temporally Weighted Regression for Modelling GRDP in West Java, Indonesia ”, Int J Sci Res Sci Eng Technol, vol. 11, no. 3, pp. 347–355, Jun. 2024, doi: 10.32628/IJSRSET24113144.

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.