Comparison of Ensemble Method Performance in Classifying Blood Sugar Levels Output from Non-Invasive Device

Authors

  • Alfi Indah Nurrizqi Department of Statistics, IPB University, Bogor, Indonesia Author
  • Erfiani Department of Statistics, IPB University, Bogor, Indonesia Author
  • Agus Mohamad Soleh Department of Statistics, IPB University, Bogor, Indonesia Author

DOI:

https://doi.org/10.32628/IJSRSET2411322

Keywords:

Blood Glucose, Ensemble Learning, Non-Invasive Device, Rotation Forest

Abstract

Diabetes Mellitus (DM) is a persistent health issue in many countries and is a leading cause of heart disease, kidney failure, and blindness The International Diabetes Federation (IDF) estimated in 2019 that at least 463 million people worldwide aged 20-79 suffer from diabetes. This number is expected to rise to 578 million by 2030 and 700 million by 2045. Machine learning is a type of machine learning that is very helpful in various fields, including healthcare. In classification cases, ensemble methods classify by combining decisions from several other models, one way being through majority voting. Ensemble methods often produce more accurate classification or prediction results. Several ensemble methods include random forest, extra trees, rotation forest, and double random forest. The data used in this study is part of research on the development and clinical testing of a prototype non-invasive blood glucose monitoring device by the non-invasive biomarking team at IPB. The data includes both invasive and non-invasive blood glucose measurements collected in 2019. This study compares the performance of the random forest, extra trees, rotation forest, and double random forest models on blood glucose level data obtained from non-invasive devices. The research results show that the Rotation Forest algorithm is the best model, with the highest average accuracy compared to the other three algorithms, achieving an accuracy level of 0.7142857 (71.42%).

Downloads

Download data is not yet available.

References

Pangribowo, S. 2020. Tetap Produktif, Cegah, dan Atasi Diabetes Melitus. Jakarta:Pusat Data dan Informasi Kementerian Kesehatan RI.

[ADA] American Diabetes Association. 2018. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 2018. 41 (Suppl. 1): S13–S27. DOI:10.2337/dc18-S002. DOI: https://doi.org/10.2337/dc18-S002

[IDF]. International Diabetes Federation. 2019. IDF Diabetes Atlas Ninth Edition 2019. Brussels:IDF

[IDF]. International Diabetes Federation. 2021. IDF Diabetes Atlas 10th Edition. Brussels:IDF

Imelda, S. 2019. Faktor-faktor yang mempengaruhi terjadinya diabetes melitus di Puskesmas Harapan Raya Tahun 2018.Scientia journal, 8(1), 34-37. DOI: https://doi.org/10.35141/scj.v8i1.406

Agustina V, Tekege MI, Carolin F, Wulandari AD, Weya A, Lampongajo OGC. 2021. Deteksi dini penyakit diabetes melitus. Jurnal Magistrorum Et Scholarium. 2(2): 300-309.

Jasmani, Rihiantoro T. 2016. Edukasi Dan Kadar Glukosa Darah Pada Pasien Diabetes . Jurnal Keperawatan. 12(1).doi:10.26630/jkep.v12i1.371

Umar U, Syahrir, Alyah R. 2022. Pendekatan Non-invasif Untuk Memantau Kadar Glukosa Darah Dengan Jaringan Syaraf Tiruan (JST) menggunkan Gray Level Co Occurrence Matrix (GLCM).Pada Citra Digital . Prosiding Seminar Nasional Teknik Elektro dan Informatika (SNTEI) . 8(1).

Satria E, Wildian. 2013. Rancang bangun alat ukur kadar gula darah non-invasive berbasis mikrokontroler AT89S51 dengan mengukur tingkat kekeruhan spesimen urine menggunakan sensor fotodioda. Jurnal Fisika Unand. 2(1).

Darwich, MA, Shahen, A, Daoud, A, Lahia, A, Diab, J, Ismaiel, E. 2023. Non-Invasive IR-Based Measurement of Human Blood Glucose. Eng. Proc. 35(27). doi:10.3390/ IECB2023-14593 DOI: https://doi.org/10.3390/IECB2023-14593

Istiqomah Y, Erfiani E, Syafitri UD. 2023. Klasifikasi Kadar Glukosa Darah Keluaran Alat Non-invasif Menggunakan Regresi Logistik Ordinal dengan Peringkasan Luas. Xplore: Journal of Statistics. 12(1):110–121.doi:10.29244/xplore.v12i1.1078. DOI: https://doi.org/10.29244/xplore.v12i1.1078

Latha CBC, Jeeva SC. 2019. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inform Med Unlocked. 16:100203. doi:10.1016/j.imu.2019.100203. DOI: https://doi.org/10.1016/j.imu.2019.100203

Dietterich TG. 2000. Ensemble Methods in Machine Learning. 1857:1–15. doi:10.1007/3- 540-45014-9_1. DOI: https://doi.org/10.1007/3-540-45014-9_1

Hastie T, Tibshirani R, Friedman J. 2008. The Elements of Statistical Learning. Ed ke-2. New York (NY): Springer.

Breiman L. 2001. Random forest. Machine Learning. 45: 5-32. DOI: https://doi.org/10.1023/A:1010933404324

Gregorutti B, Michel B, Saint-Pierre P. 2017. Correlation and variable importance in random forests. Stat Comput. 27(3):659–678.doi:10.1007/s11222-016-9646-1. DOI: https://doi.org/10.1007/s11222-016-9646-1

Fernández-Delgado M, Cernadas E, Barro S, Amorim D. 2014. Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research. 15:3133 3181.

Rodríguez JJ, Kuncheva LI, Alonso CJ. 2006. Rotation forest: A New classifier ensemble method. IEEE Trans Pattern Anal Mach Intell. 28(10):1619 1630. doi:10.1109/TPAMI.2006.211. DOI: https://doi.org/10.1109/TPAMI.2006.211

Bustamam A, Musti MIS, Hartomo S, Aprilia S, Tampubolon PP, Lestari D. 2019. Performance of rotation forest ensemble classifier and feature extractor in predicting protein interactions using amino acid sequences. BMC Genomics. 20(S9):950.doi:10.1186/s12864-019-6304-y. DOI: https://doi.org/10.1186/s12864-019-6304-y

Han S, Kim H, Lee Y-S. 2020. Double random forest. Mach Learn. 109(8):1569–1586.doi:10.1007/s10994-020-05889-1. DOI: https://doi.org/10.1007/s10994-020-05889-1

Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees. Mach Learn. 63: 3-42. doi: 10.1007/s10994-006-6226-1. DOI: https://doi.org/10.1007/s10994-006-6226-1

Bagnall A, Flynn M, Large J, Line J, Bostrom A, Cawley G. 2018 Sep 18. Is rotation forest the best classifier for problems with continuous features? http://arxiv.org/abs/1809.06705.

Markoulidakis I, Rallis I, Georgoulas I, Kopsiaftis G, Doulamis A, Doulamis N. 2021. Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem. Technologies (Basel). 9(4):81. doi:10.3390/technologies9040081. DOI: https://doi.org/10.3390/technologies9040081

Downloads

Published

10-06-2024

Issue

Section

Research Articles

How to Cite

[1]
Alfi Indah Nurrizqi, Erfiani, and Agus Mohamad Soleh, “Comparison of Ensemble Method Performance in Classifying Blood Sugar Levels Output from Non-Invasive Device”, Int J Sci Res Sci Eng Technol, vol. 11, no. 3, pp. 330–336, Jun. 2024, doi: 10.32628/IJSRSET2411322.

Similar Articles

1-10 of 87

You may also start an advanced similarity search for this article.