Crime Prediction Using Machine Learning and Deep Learning

Authors

  • P. Karthik UG Student, Department of Computer Science and Engineering (Internet of Things), Guru Nanak Institutions Technical Campus, Hyderabad, Telangana, India Author
  • P. Jayanth UG Student, Department of Computer Science and Engineering (Internet of Things), Guru Nanak Institutions Technical Campus, Hyderabad, Telangana, India Author
  • K. Tharun Nayak UG Student, Department of Computer Science and Engineering (Internet of Things), Guru Nanak Institutions Technical Campus, Hyderabad, Telangana, India Author
  • K. Anil Kumar Assistant Professor, Department of Computer Science and Engineering (Internet of Things), Guru Nanak Institutions Technical Campus, Hyderabad, Telangana, India Author

DOI:

https://doi.org/10.32628/IJSRSET241134

Keywords:

Machine Learning, Deep Learning, Research Review, Crime Prediction, Algorithm Application, Dataset Analysis, Trend Identification, Criminal Activity Factors, Predictive Accuracy, Future Directions, Law Enforcement Strategies

Abstract

The utilization of machine learning and deep learning methods for crime prediction has become a focal point for researchers, aiming to decipher the complex patterns and occurrences of crime. This review scrutinizes an extensive collection of over 150 scholarly articles to delve into the assortment of machine learning and deep learning techniques employed in forecasting criminal behaviour. It grants access to the datasets leveraged by researchers for crime forecasting and delves into the key methodologies utilized in these predictive algorithms. The study sheds light on the various trends and elements associated with criminal behaviour and underscores the existing deficiencies and prospective avenues for advancing crime prediction precision. This thorough examination of the current research on crime forecasting through machine learning and deep learning serves as an essential resource for scholars in the domain. A more profound comprehension of these predictive methods will empower law enforcement to devise more effective prevention and response strategies against crime.

Downloads

Download data is not yet available.

References

N. Shah, N. Bhagat, and M. Shah, "Crime forecasting: A machine learning and computer vision approach to crime prediction and prevention," Vis. Comput. Ind., Biomed., Art, vol. 4, no. 1, pp. 1-14, Apr. 2021. DOI: https://doi.org/10.1186/s42492-021-00075-z

S. A. Chun, V. A. Paturu, S. Yuan, R. Pathak, V. Atluri, and N. R. Adam, "Crime prediction model using deep neural networks," in Proc. 20th Annu. Int. Conf. Digit. Government Res., Jun. 2019, pp. 512-514. DOI: https://doi.org/10.1145/3325112.3328221

S. S. Kshatri, D. Singh, B. Narain, S. Bhatia, M. T. Quasim, and G. R. Sinha, "An empirical analysis of machine learning algorithms for crime prediction using stacked generalization: An ensemble approach," IEEE Access, vol. 9, pp. 67488-67500, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3075140

C. Janiesch, P. Zschech, and K. Heinrich, "Machine learning and deep learning," Electron. Mark., vol. 31, no. 3, pp. 685-695, Apr. 2021. DOI: https://doi.org/10.1007/s12525-021-00475-2

W. Safat, S. Asghar, and S. A. Gillani, "Empirical analysis for crime prediction and forecasting using machine learning and deep learning techniques," IEEE Access, vol. 9, pp. 70080-70094, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3078117

S. Kim, P. Joshi, P. S. Kalsi, and P. Taheri, "Crime analysis through machine learning," in Proc. IEEE 9th Annu. Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON), Nov. 2018, pp. 415-420. DOI: https://doi.org/10.1109/IEMCON.2018.8614828

D. M. Raza and D. B. Victor, "Data mining and region prediction based on crime using random forest," in Proc. Int. Conf. Artif. Intell. Smart Syst. (ICAIS), Mar. 2021, pp. 980-987. DOI: https://doi.org/10.1109/ICAIS50930.2021.9395989

L. Elluri, V. Mandalapu, and N. Roy, "Developing machine learning based predictive models for smart policing," in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), Jun. 2019, pp. 198-204. DOI: https://doi.org/10.1109/SMARTCOMP.2019.00053

A. Meijer and M. Wessels, "Predictive policing: Review of benefits and drawbacks," Int. J. Public Admin., vol. 42, no. 12, pp. 1031-1039, Sep. 2019. DOI: https://doi.org/10.1080/01900692.2019.1575664

S. Hossain, A. Abtahee, I. Kashem, M. M. Hoque, and I. H. Sarker, "Crime prediction using spatio-temporal data," in Computing Science, Communication and Security. Gujarat, India: Springer, 2020, pp. 277-289. DOI: https://doi.org/10.1007/978-981-15-6648-6_22

M. Saraiva, I. Matijosaitiene, S. Mishra, and A. Amante, "Crime prediction and monitoring in Porto, Portugal, using machine learning, spatial and text analytics," ISPRS Int. J. Geo-Inf., vol. 11, no. 7, p. 400, Jul. 2022. DOI: https://doi.org/10.3390/ijgi11070400

O. Kounadi, A. Ristea, A. Araujo, and M. Leitner, "A systematic review on spatial crime forecasting," Crime Sci., vol. 9, pp. 1-22, Dec. 2020. DOI: https://doi.org/10.1186/s40163-020-00116-7

L. J. Morrisey, "Bibliometric and bibliographic analysis in an era of electronic scholarly communication," in Scholarly Communication in Science and Engineering Research in Higher Education. Evanston, IL, USA: Routledge, 2013, pp. 149-160.

M. Hofmann and A. Chisholm, Text Mining and Visualization: Case Studies Using Open-Source Tools, vol. 40. Boca Raton, FL, USA: CRC Press, 2016. DOI: https://doi.org/10.1201/b19007

P. Tamilarasi and R. U. Rani, "Diagnosis of crime rate against women using K-fold cross validation through machine learning," in Proc. 4th Int. Conf. Comput. Methodologies Commun. (ICCMC), Mar. 2020, pp. 1034-1038. DOI: https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000193

A. Kumar, A. Verma, G. Shinde, Y. Sukhdeve, and N. Lal, "Crime prediction using K-nearest neighboring algorithm," in Proc. Int. Conf. Emerg. Trends Inf. Technol. Eng., Feb. 2020, pp. 1-4. DOI: https://doi.org/10.1109/ic-ETITE47903.2020.155

S. Agarwal, L. Yadav, and M. K. Thakur, "Crime prediction based on statistical models," in Proc. 11th Int. Conf. Contemp. Comput. (IC), Aug. 2018, pp. 1-3. DOI: https://doi.org/10.1109/IC3.2018.8530548

S. R. Bandekar and C. Vijayalakshmi, "Design and analysis of machine learning algorithms for the reduction of crime rates in India," Proc. Comput. Sci., vol. 172, pp. 122-127, Jan. 2020. DOI: https://doi.org/10.1016/j.procs.2020.05.018

A. Gahalot, S. Dhiman, and L. Chouhan, "Crime prediction and analysis," in Proc. 2nd Int. Conf. Data, Eng. Appl. (IDEA), Feb. 2020, pp. 1-6.

B. Sivanagaleela and S. Rajesh, "Crime analysis and prediction using fuzzy C-means algorithm," in Proc. 3rd Int. Conf. Trends Electron. Informat. (ICOEI), Apr. 2019, pp. 595-599. DOI: https://doi.org/10.1109/ICOEI.2019.8862691

A. M. Shermila, A. B. Bellarmine, and N. Santiago, "Crime data analysis and prediction of perpetrator identity using machine learning approach," in Proc. 2nd Int. Conf. Trends Electron. Informat. (ICOEI), May 2018, pp. 107-114. DOI: https://doi.org/10.1109/ICOEI.2018.8553904

C. Catlett, E. Cesario, D. Talia, and A. Vinci, "A data-driven approach for spatio-temporal crime predictions in smart cities," in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), Jun. 2018, pp. 17-24. DOI: https://doi.org/10.1109/SMARTCOMP.2018.00069

C. Catlett, E. Cesario, D. Talia, and A. Vinci, "Spatio-temporal crime predictions in smart cities: A data-driven approach and experiments," Pervas. Mobile Comput., vol. 53, pp. 62-74, Feb. 2019. DOI: https://doi.org/10.1016/j.pmcj.2019.01.003

F. Yi, Z. Yu, F. Zhuang, X. Zhang, and H. Xiong, "An integrated model for crime prediction using temporal and spatial factors," in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 1386-1391. DOI: https://doi.org/10.1109/ICDM.2018.00190

S. K. Dash, I. Safro, and R. S. Srinivasamurthy, "Spatio-temporal prediction of crimes using network analytic approach," in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2018, pp. 1912-1917. DOI: https://doi.org/10.2139/ssrn.3235421

X. Han, X. Hu, H.Wu, B. Shen, and J.Wu, "Risk prediction of theft crimes in urban communities: An integrated model of LSTM and ST-GCN," IEEE Access, vol. 8, pp. 217222-217230, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3041924

Z. Li, C. Huang, L. Xia, Y. Xu, and J. Pei, "Spatial-temporal hypergraph self-supervised learning for crime prediction," in Proc. IEEE 38th Int. Conf. Data Eng. (ICDE), May 2022, pp. 2984-2996. DOI: https://doi.org/10.1109/ICDE53745.2022.00269

N. Tasnim, I. T. Imam, and M. M. A. Hashem, "A novel multi-module approach to predict crime based on multivariate spatio-temporal data using attention and sequential fusion model," IEEE Access, vol. 10, pp. 48009-48030, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3171843

B. Zhou, L. Chen, S. Zhao, S. Li, Z. Zheng, and G. Pan, "Unsupervised domain adaptation for crime risk prediction across cities," IEEE Trans. Computat. Social Syst., early access, Sep. 29, 2022, doi: 10.1109/TCSS.2022.3207987. DOI: https://doi.org/10.1109/TCSS.2022.3207987

U. M. Butt, S. Letchmunan, F. H. Hassan, M. Ali, A. Baqir, T. W. Koh, and H. H. R. Sherazi, "Spatio-temporal crime predictions by leveraging artificial intelligence for citizens security in smart cities," IEEE Access, vol. 9, pp. 47516-47529, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3068306

S. Yao, M. Wei, L. Yan, C. Wang, X. Dong, F. Liu, and Y. Xiong, "Prediction of crime hotspots based on spatial factors of random forest," in Proc. 15th Int. Conf. Comput. Sci. Educ. (ICCSE), Aug. 2020, pp. 811-815. DOI: https://doi.org/10.1109/ICCSE49874.2020.9201899

M. Sathiyanarayanan, A. K. Junejo, and O. Fadahunsi, "Visual analysis of predictive policing to improve crime investigation," in Proc. Int. Conf. Contemp. Comput. Informat. (ICI), Dec. 2019, pp. 197-203. DOI: https://doi.org/10.1109/IC3I46837.2019.9055515

A. Araujo, N. Cacho, L. Bezerra, C. Vieira, and J. Borges, "Towards a crime hotspot detection framework for patrol planning," in Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun., IEEE 16th Int. Conf. Smart City, IEEE 4th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Jun. 2018, pp. 1256-1263. DOI: https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00211

A. A. Almuhanna, M. M. Alrehili, S. H. Alsubhi, and L. Syed, "Prediction of crime in neighbourhoods of New York City using spatial data analysis," in Proc. 1st Int. Conf. Artif. Intell. Data Analytics (CAIDA), Apr. 2021, pp. 23-30. DOI: https://doi.org/10.1109/CAIDA51941.2021.9425120

A. Baqir, S. U. Rehman, S. Malik, F. U. Mustafa, and U. Ahmad, "Evaluating the performance of hierarchical clustering algorithms to detect spatio-temporal crime hot-spots," in Proc. 3rd Int. Conf. Comput., Math. Eng. Technol. (iCoMET), Jan. 2020, pp. 1-5. DOI: https://doi.org/10.1109/iCoMET48670.2020.9074125

A. Algefes, N. Aldossari, F. Masmoudi, and E. Kariri, "A text-mining approach for crime tweets in Saudi Arabia: From analysis to prediction," in Proc. 7th Int. Conf. Data Sci. Mach. Learn. Appl. (CDMA), Mar. 2022, pp. 109-114. DOI: https://doi.org/10.1109/CDMA54072.2022.00023

S. P. C. W. Sandagiri, B. T. G. S. Kumara, and B. Kuhaneswaran, "Detecting crime related Twitter posts using artificial neural networks based approach," in Proc. 20th Int. Conf. Adv. ICT Emerg. Regions (ICTer), Nov. 2020, pp. 5-10. DOI: https://doi.org/10.1109/ICTer51097.2020.9325485

M. A. Permana, M. I. Thohir, T. Mantoro, and M. A. Ayu, "Crime rate detection based on text mining on social media using logistic regression algorithm," in Proc. IEEE 7th Int. Conf. Comput., Eng. Design (ICCED), Aug. 2021, pp. 1-6. DOI: https://doi.org/10.1109/ICCED53389.2021.9664846

X. Zhou, X. Wang, G. Brown, C. Wang, and P. Chin, "Mixed spatiotemporal neural networks on real-time prediction of crimes," in Proc. 20th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2021, pp. 1749-1754. DOI: https://doi.org/10.1109/ICMLA52953.2021.00277

R. Shenoy, D. Yadav, H. Lakhotiya, and J. Sisodia, "An intelligent framework for crime prediction using behavioural tracking and motion analysis," in Proc. Int. Conf. Emerg. Smart Comput. Informat. (ESCI), Mar. 2022, pp. 1-6. DOI: https://doi.org/10.1109/ESCI53509.2022.9758281

N. Aldossari, A. Algefes, F. Masmoudi, and E. Kariri, "Data science approach for crime analysis and prediction: Saudi Arabia use-case," in Proc. 5th Int. Conf. Women Data Sci. Prince Sultan Univ. (WiDS PSU), Mar. 2022, pp. 20-25. DOI: https://doi.org/10.1109/WiDS-PSU54548.2022.00016

Y. Ma, K. Nakamura, E. Lee, and S. S. Bhattacharyya, "EADTC: An approach to interpretable and accurate crime prediction," in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2022, pp. 170-177. DOI: https://doi.org/10.1109/SMC53654.2022.9945130

M. Boukabous and M. Azizi, "Multimodal sentiment analysis using audio and text for crime detection," in Proc. 2nd Int. Conf. Innov. Res. Appl. Sci., Eng. Technol. (IRASET), Mar. 2022, pp. 1-5. DOI: https://doi.org/10.1109/IRASET52964.2022.9738175

L. G. A. Alves, H. V. Ribeiro, and F. A. Rodrigues, "Crime prediction through urban metrics and statistical learning," Phys. A, Stat. Mech. Appl., vol. 505, pp. 435-443, Sep. 2018. DOI: https://doi.org/10.1016/j.physa.2018.03.084

J. He and H. Zheng, "Prediction of crime rate in urban neighborhoods based on machine learning," Eng. Appl. Artif. Intell., vol. 106, Nov. 2021, Art. no. 104460. DOI: https://doi.org/10.1016/j.engappai.2021.104460

H. K. R. ToppiReddy, B. Saini, and G. Mahajan, "Crime prediction & monitoring framework based on spatial analysis," Proc. Comput. Sci., vol. 132, pp. 696-705, Jan. 2018. DOI: https://doi.org/10.1016/j.procs.2018.05.075

A. Wolf, T. R. Fanshawe, A. Sariaslan, R. Cornish, H. Larsson, and S. Fazel, "Prediction of violent crime on discharge from secure psychiatric hospitals: A clinical prediction rule (FoVOx)," Eur. Psychiatry, vol. 47, pp. 88-93, Jan. 2018. DOI: https://doi.org/10.1016/j.eurpsy.2017.07.011

K. B. Sahay, B. Balachander, B. Jagadeesh, G. A. Kumar, R. Kumar, and L. R. Parvathy, "A real time crime scene intelligent video surveillance systems in violence detection framework using deep learning techniques," Comput. Electr. Eng., vol. 103, Oct. 2022, Art. no. 108319. DOI: https://doi.org/10.1016/j.compeleceng.2022.108319

P. E. P. Utomo, "Prediction the crime motorcycles of theft using ARIMAXTFM with single input," in Proc. 3rd Int. Conf. Informat. Comput. (ICIC), Oct. 2018, pp. 1-7.

V. Ingilevich and S. Ivanov, "Crime rate prediction in the urban environment using social factors," Proc. Comput. Sci., vol. 136, pp. 472-478, Jan. 2018. DOI: https://doi.org/10.1016/j.procs.2018.08.261

Downloads

Published

04-05-2024

Issue

Section

Research Articles

How to Cite

[1]
P. Karthik, P. Jayanth, K. Tharun Nayak, and K. Anil Kumar, “Crime Prediction Using Machine Learning and Deep Learning”, Int J Sci Res Sci Eng Technol, vol. 11, no. 3, pp. 08–15, May 2024, doi: 10.32628/IJSRSET241134.

Similar Articles

1-10 of 210

You may also start an advanced similarity search for this article.