Numerical Models in the Epidemiology of Infectious Diseases

Authors

  • Naveed Ul Haq Research Scholar, School of Studies in Mathematics Vikram University, Ujjain, Madhya Pradesh, India Author
  • Sandeep Kumar Tiwari Head, School of Studies in Mathematics, Vikram University, Ujjain, Madhya Pradesh, India Author
  • Pradeep Porwal Assistant Professor, School of Studies in Mathematics, Vikram University, Ujjain, Madhya Pradesh, India Author
  • Irfan Ul Haq Research Scholar, School of Studies in Mathematics Vikram University, Ujjain, Madhya Pradesh, India Author

DOI:

https://doi.org/10.32628/IJSRSET2411410

Keywords:

Epidemiology, Infectious Diseases, Mathematical Modeling, Public Health

Abstract

The dynamics of infectious disease transmission are subject to fluctuations that are controlled by a number of factors, which must be understood in order to rationally build preventative and control techniques and health policies. In this situation, mathematical modeling can offer helpful insights into patterns of transmission and the identification of parameters to reduce population-wide sickness.

Downloads

Download data is not yet available.

References

Costa ALP, Neto OAR, Silva-Júnior ACS (2019) Conditioners of the infectious diseases dynamics. Estação Científica (UNIFAP) 8: 09. DOI: https://doi.org/10.18468/estcien.2018v8n3.p09-23

Wang Z, Andrews MA, Wu Z-X, Wang L, Bauch CT (2015) Coupled disease-behavior dynamics on complex networks: A review. Phys Life Rev 15: 1-29. DOI: https://doi.org/10.1016/j.plrev.2015.07.006

Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, et al. (2020) A stochastic agent-based model of the SARSCoV-2 epidemic in France. Nat Med 26: 1417-1421. 8. DOI: https://doi.org/10.1038/s41591-020-1001-6

Cooper HM (1988) Organizing knowledge syntheses: A taxonomy of literature reviews. Knowl Soc 1: 104-126. 9. DOI: https://doi.org/10.1007/BF03177550

Maanen A Van, Saint-luc CU, Xu X (2017) Modelling Plant Disease Epidemics Modelling plant disease epidemics. 10.

Huppert A, Katriel G (2013) Mathematical modelling and prediction in infectious disease epidemiology. Clin Microbiol Infect 19: 999-1005. 11. DOI: https://doi.org/10.1111/1469-0691.12308

Opatowski L, Guillemot D, Boëlle PY, Temime L (2011) Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr Opin Infect Dis 24: 279287. 12. DOI: https://doi.org/10.1097/QCO.0b013e3283462362

Siettos CI, Russo L (2013) Mathematical modeling of infectious disease dynamics. Virulence 4: 295-306. 13. DOI: https://doi.org/10.4161/viru.24041

Van den Driessche P (2017) Reproduction numbers of infectious disease models. Infect Dis Model 2: 288-303. 14. DOI: https://doi.org/10.1016/j.idm.2017.06.002

Keeling MJ, Danon L (2009) Mathematical modelling of infectious diseases. Br Med Bull 92: 33-42. 15. DOI: https://doi.org/10.1093/bmb/ldp038

Mohtashemi M, Szolovits P, Dunyak J, Mandl KD (2006) A susceptible-infected model of early detection of respiratory infection outbreaks on a background of influenza. J Theor Biol 241: 954-963. 16. DOI: https://doi.org/10.1016/j.jtbi.2006.01.031

Kim JH, Koopman JS (2012) HIV transmissions by stage in dynamic sexual partnerships. J Theor Biol 298: 147-153. 17. DOI: https://doi.org/10.1016/j.jtbi.2011.12.021

Dharmaratne S, Sudaraka S, Abeyagunawardena I, Manchanayake K, Kothalawala M, et al. (2020) Estimation of the basic reproduction number (R0) for the novel coronavirus disease in Sri Lanka. Virol J 17: 144. 18. DOI: https://doi.org/10.1186/s12985-020-01411-0

Downloads

Published

07-08-2024

Issue

Section

Research Articles

How to Cite

[1]
Naveed Ul Haq, Sandeep Kumar Tiwari, Pradeep Porwal, and Irfan Ul Haq, “Numerical Models in the Epidemiology of Infectious Diseases”, Int J Sci Res Sci Eng Technol, vol. 11, no. 4, pp. 203–207, Aug. 2024, doi: 10.32628/IJSRSET2411410.

Similar Articles

1-10 of 49

You may also start an advanced similarity search for this article.