Numerical Models in the Epidemiology of Infectious Diseases
DOI:
https://doi.org/10.32628/IJSRSET2411410Keywords:
Epidemiology, Infectious Diseases, Mathematical Modeling, Public HealthAbstract
The dynamics of infectious disease transmission are subject to fluctuations that are controlled by a number of factors, which must be understood in order to rationally build preventative and control techniques and health policies. In this situation, mathematical modeling can offer helpful insights into patterns of transmission and the identification of parameters to reduce population-wide sickness.
Downloads
References
Costa ALP, Neto OAR, Silva-Júnior ACS (2019) Conditioners of the infectious diseases dynamics. Estação Científica (UNIFAP) 8: 09. DOI: https://doi.org/10.18468/estcien.2018v8n3.p09-23
Wang Z, Andrews MA, Wu Z-X, Wang L, Bauch CT (2015) Coupled disease-behavior dynamics on complex networks: A review. Phys Life Rev 15: 1-29. DOI: https://doi.org/10.1016/j.plrev.2015.07.006
Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, et al. (2020) A stochastic agent-based model of the SARSCoV-2 epidemic in France. Nat Med 26: 1417-1421. 8. DOI: https://doi.org/10.1038/s41591-020-1001-6
Cooper HM (1988) Organizing knowledge syntheses: A taxonomy of literature reviews. Knowl Soc 1: 104-126. 9. DOI: https://doi.org/10.1007/BF03177550
Maanen A Van, Saint-luc CU, Xu X (2017) Modelling Plant Disease Epidemics Modelling plant disease epidemics. 10.
Huppert A, Katriel G (2013) Mathematical modelling and prediction in infectious disease epidemiology. Clin Microbiol Infect 19: 999-1005. 11. DOI: https://doi.org/10.1111/1469-0691.12308
Opatowski L, Guillemot D, Boëlle PY, Temime L (2011) Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr Opin Infect Dis 24: 279287. 12. DOI: https://doi.org/10.1097/QCO.0b013e3283462362
Siettos CI, Russo L (2013) Mathematical modeling of infectious disease dynamics. Virulence 4: 295-306. 13. DOI: https://doi.org/10.4161/viru.24041
Van den Driessche P (2017) Reproduction numbers of infectious disease models. Infect Dis Model 2: 288-303. 14. DOI: https://doi.org/10.1016/j.idm.2017.06.002
Keeling MJ, Danon L (2009) Mathematical modelling of infectious diseases. Br Med Bull 92: 33-42. 15. DOI: https://doi.org/10.1093/bmb/ldp038
Mohtashemi M, Szolovits P, Dunyak J, Mandl KD (2006) A susceptible-infected model of early detection of respiratory infection outbreaks on a background of influenza. J Theor Biol 241: 954-963. 16. DOI: https://doi.org/10.1016/j.jtbi.2006.01.031
Kim JH, Koopman JS (2012) HIV transmissions by stage in dynamic sexual partnerships. J Theor Biol 298: 147-153. 17. DOI: https://doi.org/10.1016/j.jtbi.2011.12.021
Dharmaratne S, Sudaraka S, Abeyagunawardena I, Manchanayake K, Kothalawala M, et al. (2020) Estimation of the basic reproduction number (R0) for the novel coronavirus disease in Sri Lanka. Virol J 17: 144. 18. DOI: https://doi.org/10.1186/s12985-020-01411-0
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.