Advancements in Quadcopter Development through Additive Manufacturing: A Comprehensive Review
DOI:
https://doi.org/10.32628/IJSRSET24114109Keywords:
Quadcopters, Additive Manufacturing, D Printing in UAV Development, Sustainable ManufacturingAbstract
The paper provides a comprehensive review of the advancements in quadcopters development made possible through additive manufacturing (AM). The review begins with an introduction to quadcopter technology and the basics of AM, followed by an exploration of the various AM technologies and materials used for creating quadcopter components. It highlights the innovative designs and complex geometries enabled by AM, as well as the improvements in customization and integration of multiple functions into single components. Practical case studies demonstrate the application of AM in producing high-performance quadcopters for various sectors, including military, commercial, research, and recreational use. The paper also addresses the technical challenges, economic considerations, and regulatory issues associated with AM in quadcopter development. Finally, it discusses future trends and research directions, emphasizing the potential of emerging materials and technologies to further enhance quadcopter performance. This review underscores the significant impact of AM on the evolution of quadcopters and the importance of ongoing research in this field.
Downloads
References
M. Manimaraboopathy, H. Christopher, S. Vignesh, and P. selvan, “Unmanned Fire Extinguisher Using Quadcopter,” International Journal on Smart Sensing and Intelligent Systems, vol. 2017, pp. 471–481, Jul. 2017, doi: 10.21307/ijssis-2017-264. DOI: https://doi.org/10.21307/ijssis-2017-264
G. Ostojic, S. Stankovski, B. Tejic, N. Đukić, and S. Tegeltija, “Design, Control and Application of Quadcopter,” International Journal of Industrial Engineering and Management, vol. 6, pp. 43–48, Jul. 2015, doi: 10.24867/IJIEM-2015-1-106. DOI: https://doi.org/10.24867/IJIEM-2015-1-106
S. Gupte, P. Mohandas, and J. Conrad, “A survey of quadrotor Unmanned Aerial Vehicles,” in Conference Proceedings - IEEE SOUTHEASTCON, Jul. 2012, pp. 1–6. doi: 10.1109/SECon.2012.6196930. DOI: https://doi.org/10.1109/SECon.2012.6196930
S. M. I. J. Kim, M. I. S. A. Gadsden, and M. I. S. A. Wilkerson, “A Comprehensive Survey of Control Strategies for Autonomous Quadrotors,” Canadian Journal of Electrical and Computer Engineering, vol. 43, pp. 3–16, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:202158595 DOI: https://doi.org/10.1109/CJECE.2019.2920938
B. Emran and H. Najjaran, “A review of quadrotor: An underactuated mechanical system,” Annu Rev Control, vol. 46, Jul. 2018, doi: 10.1016/j.arcontrol.2018.10.009. DOI: https://doi.org/10.1016/j.arcontrol.2018.10.009
S. Norouzi Ghazbi, Y. Aghli, M. Alimohammadi, and A. A. Akbari, “Quadrotors Unmanned Aerial Vehicles: A Review,” International Journal on Smart Sensing and Intelligent Systems, vol. 9, pp. 309–333, Jul. 2016, doi: 10.21307/ijssis-2017-872. DOI: https://doi.org/10.21307/ijssis-2017-872
R. Thusoo, S. Jain, and S. Bangia, “Quadrotors in the Present Era: a Review,” Information Technology in Industry, vol. 9, no. 1, pp. 164–178, 2021. DOI: https://doi.org/10.17762/itii.v9i1.116
I. Seidu and J. Lawal, “Personalized Drone Interaction : Adaptive Hand Gesture Control with Facial Authentication,” Int J Sci Res Sci Eng Technol, vol. 11, pp. 43–60, Jul. 2024, doi: 10.32628/IJSRSET241146. DOI: https://doi.org/10.32628/IJSRSET241146
V. Andaluz et al., “Nonlinear Controller of Quadcopters for Agricultural Monitoring,” Jul. 2015. doi: 10.1007/978-3-319-27857-5_43. DOI: https://doi.org/10.1007/978-3-319-27857-5_43
V. Klemas, “Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview,” J Coast Res, vol. 315, pp. 1260–1267, Jul. 2015, doi: 10.2112/JCOASTRES-D-15-00005.1. DOI: https://doi.org/10.2112/JCOASTRES-D-15-00005.1
V. Clarkson and F. Gonzalez, “Drone technology is flying to new heights,” IEEE Potentials, vol. 41, no. 1, pp. 4–5, 2022, doi: 10.1109/MPOT.2021.3118740. DOI: https://doi.org/10.1109/MPOT.2021.3118740
H. Shraim, A. Awada, and R. Younes, “A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control,” IEEE Aerospace and Electronic Systems Magazine, vol. 33, pp. 14–33, Jul. 2018, doi: 10.1109/MAES.2018.160246. DOI: https://doi.org/10.1109/MAES.2018.160246
O. Adeleke, O. Ojekanmi, and I. Seidu, “Development and Performance Evaluation of a Quadcopter,” INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING AND MANAGEMENT, vol. 3, p. 1116, Jul. 2021, doi: 10.35629/5252-031211161128.
K. Agrawal and P. Shrivastav, “Multi-rotors: A Revolution In Unmanned Aerial Vehicle,” 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:2328180
K. Cheung et al., “An Overview of the U.S. Army Aviation Development Directorate Quadrotor Guidance, Navigation, and Control Project,” Jul. 2017.
A. Zaporozhets, “Overview of Quadrocopters for Energy and Ecological Monitoring,” 2020, pp. 15–36. doi: 10.1007/978-3-030-48583-2_2. DOI: https://doi.org/10.1007/978-3-030-48583-2_2
P. Nathan, H. Almurib, and N. Thulasiraman, “A review of autonomous multi-agent quad-rotor control techniques and applications,” Jul. 2011, pp. 1–7. doi: 10.1109/ICOM.2011.5937132. DOI: https://doi.org/10.1109/ICOM.2011.5937132
R. Aravind and S. Mathivathani, “Overview of Quad Copter and Its Utilitarian,” J Comput Theor Nanosci, vol. 16, pp. 503–506, Jul. 2019, doi: 10.1166/jctn.2019.7758. DOI: https://doi.org/10.1166/jctn.2019.7758
M. Idrissi, M. R. Salami, and F. Annaz, “A Review of Quadrotor Unmanned Aerial Vehicles: Applications, Architectural Design and Control Algorithms,” J Intell Robot Syst, vol. 104, Jul. 2022, doi: 10.1007/s10846-021-01527-7. DOI: https://doi.org/10.1007/s10846-021-01527-7
D. A. Gandhi and M. Ghosal, “Novel Low Cost Quadcopter for Surveillance Application,” 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 412–414, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:57378527 DOI: https://doi.org/10.1109/ICIRCA.2018.8597391
S. K. Parupelli and S. Desai, “A Comprehensive Review of Additive Manufacturing (3D Printing): Processes, Applications and Future Potential,” Am J Appl Sci, vol. 16, pp. 244–272, Jul. 2019, doi: 10.3844/ajassp.2019.244.272. DOI: https://doi.org/10.3844/ajassp.2019.244.272
Y. Huang, M. Leu, J. Mazumder, and M. Donmez, “Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations,” J Manuf Sci Eng, vol. 137, p. 14001, Jul. 2015, doi: 10.1115/1.4028725. DOI: https://doi.org/10.1115/1.4028725
J. Lim, K. Q. Le, Q. Lu, and C. Wong, “An Overview of 3-D Printing in Manufacturing, Aerospace, and Automotive Industries,” IEEE Potentials, vol. 35, pp. 18–22, Jul. 2016, doi: 10.1109/MPOT.2016.2540098. DOI: https://doi.org/10.1109/MPOT.2016.2540098
D.-M. Țura and S. Zaharia, “Design, Additive Manufacturing and Testing of a Quadcopter Drone,” Land Forces Academy Review, vol. 28, pp. 245–254, Jul. 2023, doi: 10.2478/raft-2023-0029. DOI: https://doi.org/10.2478/raft-2023-0029
R. Radharamanan, “Use of 3-D Printers to Design, Build, and Test a Quadcopter Drone,” 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:73565381
S. H. Asif, K. Hasan, and N. R. Dhar, “Topology optimization and 3D printing of a unibody quadcopter airframe,” IOP Conf Ser Mater Sci Eng, vol. 1305, no. 1, p. 12021, Apr. 2024, doi: 10.1088/1757-899X/1305/1/012021. DOI: https://doi.org/10.1088/1757-899X/1305/1/012021
H. Agarwal, A. Singhal, and K. Raj, “3D Printed Quadcopter,” 2021, pp. 491–499. doi: 10.1007/978-981-15-8025-3_48. DOI: https://doi.org/10.1007/978-981-15-8025-3_48
S. Nvss, B. Esakki, L.-J. Yang, C. Udayagiri, and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Designs (Basel), vol. 6, no. 1, 2022, doi: 10.3390/designs6010008.
C. McNulty, N. Arnas, and T. A. Campbell, “Toward the Printed World: Additive Manufacturing and Implications for National Security,” National Defense University. Institute for National Strategic Studies, p. 1, 2012, [Online]. Available: https://api.semanticscholar.org/CorpusID:60691826 DOI: https://doi.org/10.21236/ADA577162
J. Chan, “Development of a 3D Printed Quadcopter Drone through CFD Analysis,” International Journal of Advanced Trends in Computer Science and Engineering, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:216167374 DOI: https://doi.org/10.30534/ijatcse/2020/38912020
S. R. Easter, J. Turman, D. Sheffler, M. Balazs, and J. Rotner, “Using advanced manufacturing to produce unmanned aerial vehicles: a feasibility study,” in Defense, Security, and Sensing, 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:120727433 DOI: https://doi.org/10.1117/12.2027616
H. Klippstein, H. Hassanin, A. D. D. C. Sanchez, Y. H. Zweiri, and L. D. Seneviratne, “Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications,” Adv Eng Mater, vol. 20, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:139832250 DOI: https://doi.org/10.1002/adem.201800290
S. Chattopadhyay, S. Mahapatra, and N. Mandal, “Advancements and challenges in additive manufacturing: a comprehensive review,” Engineering Research Express, vol. 6, Jul. 2024, doi: 10.1088/2631-8695/ad30b1. DOI: https://doi.org/10.1088/2631-8695/ad30b1
J. Bright, R. T. Suryaprakash, S. Akash, and A. Giridharan, “Optimization of quadcopter frame using generative design and comparison with DJI F450 drone frame,” IOP Conf Ser Mater Sci Eng, vol. 1012, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:234126362 DOI: https://doi.org/10.1088/1757-899X/1012/1/012019
Drone Trest, “A complete beginner kit to get a quadcopter into the air using the F450 frame.” Accessed: Jul. 21, 2024. [Online]. Available: https://www.dronetrest.com/t/a-complete-beginner-kit-to-get-a-quadcopter-into-the-air-using-the-f450-frame/689
AliExpress, “Brushless Motor and ESC.” Accessed: Jul. 21, 2024. [Online]. Available: https://ae01.alicdn.com/kf/Sdaf94d094e61496eb9ff8443e9c826334/RS2205-2205-2300KV-CW-CCW-Brushless-Motor-With-LittleBee-30A-ESC-BLHeli-S-ESC-for-FPV.jpg_80x80.jpg_.webp
GetFPV, “SpeedyBee F405 V4 Stack - F4 V4 FC.” Accessed: Jul. 21, 2024. [Online]. Available: https://cdn-v2.getfpv.com/media/catalog/product/cache/3979b3fd908fbb12b31974edb6316b2e/s/p/speedybee-f405-v4-stack---f4-v4-fc_1.jpg
Unmanned Systems Technology, “23000mAh 8S LiPo Quadcopter batteries.” Accessed: Jul. 21, 2024. [Online]. Available: https://www.unmannedsystemstechnology.com/wp-content/uploads/2022/12/23000mAh-8S-LiPo-Quadcopter-batteries.webp
O. Liang, “Choosing the Best Radio Transmitter for Your FPV Drone: A Beginner’s Guide,” 2024.
K. S. Prakash, T. Nancharaih, and V. V. S. Rao, “Additive Manufacturing Techniques in Manufacturing -An Overview,” in Materials Today: Proceedings, 2018. doi: 10.1016/j.matpr.2017.11.642. DOI: https://doi.org/10.1016/j.matpr.2017.11.642
A. Alafaghani, A. Qattawi, and M. A. Ablat, “Design Consideration for Additive Manufacturing: Fused Deposition Modelling,” Open Journal of Applied Sciences, vol. 07, no. 06, 2017, doi: 10.4236/ojapps.2017.76024. DOI: https://doi.org/10.4236/ojapps.2017.76024
O. A. Adefuye, N. A. Raji, K. A. Adedeji, O. L. Fadipe, and B. Olowu, “ADDITIVE MANUFACTURING AND SAND-CASTING FOUNDRIES PRACTICES IN NIGERIA,” Engineering and Technology Research Journal, vol. 4, no. 1, 2019, doi: 10.47545/etrj.2019.4.1.049. DOI: https://doi.org/10.47545/etrj.2019.4.1.049
Anakhu, Bolu, Abioye, and Azeta J, “Fused Deposition Modeling Printed Patterns for Sand Casting in a Nigerian Foundry: A Review,” 2018.
MakeShaper, “Types of 3D Printer ,” Retrieved from https://www.makeshaper.com/types-of-3d-printing.
X. Wu, F. Mu, and Z. Lin, “Three-dimensional printing of graphene-based materials and the application in energy storage,” 2021. doi: 10.1016/j.mtadv.2021.100157. DOI: https://doi.org/10.1016/j.mtadv.2021.100157
J. Z. Manapat, Q. Chen, P. Ye, and R. C. Advincula, “3D Printing of Polymer Nanocomposites via Stereolithography,” 2017. doi: 10.1002/mame.201600553. DOI: https://doi.org/10.1002/mame.201600553
C. Schmidleithner and D. M. Kalaskar, “Stereolithography,” in 3D Printing, D. Cvetković, Ed., Rijeka: IntechOpen, 2018, ch. 1. doi: 10.5772/intechopen.78147. DOI: https://doi.org/10.5772/intechopen.78147
F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” 2010. doi: 10.1016/j.biomaterials.2010.04.050. DOI: https://doi.org/10.1016/j.biomaterials.2010.04.050
Protolabs Network, “What is SLA printing?,” note = {Retrieved from https://www.hubs.com/knowledge-base/what-is-sla-3d-printing/#:~:text=Top%2Ddown%20printers%20place%20the,part%20is%20built%20upside%20down.}}.
J. Huang, Q. Qin, and J. Wang, “A review of stereolithography: Processes and systems,” 2020. doi: 10.3390/PR8091138. DOI: https://doi.org/10.3390/pr8091138
W. Wang, J. Ye, H. Gong, X. Pi, C. Wang, and Y. Xia, “Computer-stereolithography-based laser rapid prototyping & manufacturing system,” IFAC Proceedings Volumes, vol. 32, no. 2, 1999, doi: 10.1016/s1474-6670(17)56013-9. DOI: https://doi.org/10.1016/S1474-6670(17)56013-9
M. L. McAllister, “Application of stereolithography to subperiosteal implant manufacture.,” J Oral Implantol, vol. 24, no. 2, 1998, doi: 10.1563/1548-1336(1998)024<0089:AOSTSI>2.3.CO;2. DOI: https://doi.org/10.1563/1548-1336(1998)024<0089:AOSTSI>2.3.CO;2
K. Ikuta, K. Hirowatari, and T. Ogata, “Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography,” Proceedings of the IEEE Micro Electro Mechanical Systems, 1994, doi: 10.1109/memsys.1994.555588. DOI: https://doi.org/10.1109/MEMSYS.1994.555588
T. Takagi and N. Nakajima, “Photoforming applied to fine machining,” in IEEE Micro Electro Mechanical Systems, 1993. doi: 10.1109/memsys.1993.296927. DOI: https://doi.org/10.1109/MEMSYS.1993.296927
A. Bertsch, S. Zissi, J. Y. Jezequel, S. Corbel, and J. C. Andre, “Microstereophotolithography using a liquid crystal display as dynamic mask-generator,” Microsystem technologies, vol. 3, no. 2, pp. 42–47, 1997. DOI: https://doi.org/10.1007/s005420050053
E. V Fudim, “Method and apparatus for production of three-dimensional objects by photosolidification,” Jun. 1988, Google Patents.
I. Pomerantz et al., “Three dimensional modeling apparatus,” Jan. 1995, Google Patents.
J. M. Younse, “Projection display systems based on the Digital Micromirror Device (DMD),” in Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications, 1995. doi: 10.1117/12.220943. DOI: https://doi.org/10.1117/12.220943
J. PF, “Rapid Prototyping and Manufacturing:Fundamantals of Stereolithography,” Dearbom Mich:Society of Manufacturing Engineering, vol. 16, 1992.
R. Janusziewicz, J. R. Tumbleston, A. L. Quintanilla, S. J. Mecham, and J. M. DeSimone, “Layerless fabrication with continuous liquid interface production,” 2016. doi: 10.1073/pnas.1605271113. DOI: https://doi.org/10.1073/pnas.1605271113
N. A. Charoo et al., “Selective laser sintering 3D printing–an overview of the technology and pharmaceutical applications,” 2020. doi: 10.1080/03639045.2020.1764027. DOI: https://doi.org/10.1080/03639045.2020.1764027
Y. Song, Y. Ghafari, A. Asefnejad, and D. Toghraie, “An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: Processes, materials, and applications,” 2024. doi: 10.1016/j.optlastec.2023.110459. DOI: https://doi.org/10.1016/j.optlastec.2023.110459
A. Jandyal, I. Chaturvedi, I. Wazir, A. Raina, and M. I. Ul Haq, “3D printing – A review of processes, materials and applications in industry 4.0,” Sustainable Operations and Computers, vol. 3, 2022, doi: 10.1016/j.susoc.2021.09.004. DOI: https://doi.org/10.1016/j.susoc.2021.09.004
CUSTOMPART, “Selective Laser Sintering,” Retrieved from https://www.custompartnet.com/wu/selective-laser-sintering.
H. Zhang and S. LeBlanc, “Processing Parameters for Selective Laser Sintering or Melting of Oxide Ceramics,” in Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization, 2018. doi: 10.5772/intechopen.75832. DOI: https://doi.org/10.5772/intechopen.75832
M. Li, W. Du, A. Elwany, Z. Pei, and C. Ma, “Metal binder jetting additive manufacturing: A literature review,” 2020. doi: 10.1115/1.4047430. DOI: https://doi.org/10.1115/1.4047430
Protolabs, “What is Binder Jetting,” ww.hubs.com/knowledge- base/what-is-binder-jetting-3d-printing/.
A. Mostafaei et al., “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges,” 2021. doi: 10.1016/j.pmatsci.2020.100707. DOI: https://doi.org/10.1016/j.pmatsci.2020.100707
P. C. Painter and M. M. Coleman, “Fundamentals of Polymer Science : An Introductory Text, Second Edition,” Fundamentals of Polymer Science, 2019. DOI: https://doi.org/10.1201/9780203755211
T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” 2018. doi: 10.1016/j.compositesb.2018.02.012. DOI: https://doi.org/10.1016/j.compositesb.2018.02.012
Amazon, “amazon.co.uk,” howpublished = {url{https://www.amazon.co.uk/Filament-Dveda-Printing-Dimensional-Compatible/dp/B08ZY6BDD5}}.
A. Bhatia and A. K. Sehgal, “Additive manufacturing materials, methods and applications: A review,” Mater Today Proc, vol. 81, pp. 1060–1067, 2023, doi: https://doi.org/10.1016/j.matpr.2021.04.379. DOI: https://doi.org/10.1016/j.matpr.2021.04.379
S. Wojtyła, P. Klama, and T. Baran, “Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon,” J Occup Environ Hyg, vol. 14, no. 6, 2017, doi: 10.1080/15459624.2017.1285489. DOI: https://doi.org/10.1080/15459624.2017.1285489
D. Bourell et al., “Materials for additive manufacturing,” CIRP Annals, vol. 66, no. 2, pp. 659–681, 2017, doi: https://doi.org/10.1016/j.cirp.2017.05.009. DOI: https://doi.org/10.1016/j.cirp.2017.05.009
D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, “Additive manufacturing of metals,” Acta Mater, vol. 117, 2016, doi: 10.1016/j.actamat.2016.07.019. DOI: https://doi.org/10.1016/j.actamat.2016.07.019
T. Duda and L. V. Raghavan, “3D Metal Printing Technology,” in IFAC-PapersOnLine, 2016. doi: 10.1016/j.ifacol.2016.11.111. DOI: https://doi.org/10.1016/j.ifacol.2016.11.111
E. Sheydaeian and E. Toyserkani, “A new approach for fabrication of titanium-titanium boride periodic composite via additive manufacturing and pressure-less sintering,” Compos B Eng, vol. 138, 2018, doi: 10.1016/j.compositesb.2017.11.035. DOI: https://doi.org/10.1016/j.compositesb.2017.11.035
M. Koike et al., “Evaluation of titanium alloys fabricated using rapid prototyping technologies-electron beam melting and laser beam melting,” Materials, vol. 4, no. 10, 2011, doi: 10.3390/ma4101776. DOI: https://doi.org/10.3390/ma4101776
T. Vilaro, C. Colin, and J. D. Bartout, “As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting,” Metall Mater Trans A Phys Metall Mater Sci, vol. 42, no. 10, 2011, doi: 10.1007/s11661-011-0731-y. DOI: https://doi.org/10.1007/s11661-011-0731-y
C. Qiu, N. J. E. Adkins, and M. M. Attallah, “Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V,” Materials Science and Engineering: A, vol. 578, 2013, doi: 10.1016/j.msea.2013.04.099. DOI: https://doi.org/10.1016/j.msea.2013.04.099
L. E. Murr et al., “Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V,” Mater Charact, vol. 60, no. 2, 2009, doi: 10.1016/j.matchar.2008.07.006. DOI: https://doi.org/10.1016/j.matchar.2008.07.006
H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, and B. E. Stucker, “Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting,” J Mater Eng Perform, vol. 22, no. 12, 2013, doi: 10.1007/s11665-013-0658-0. DOI: https://doi.org/10.1007/s11665-013-0658-0
X. Tan et al., “Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting,” Acta Mater, vol. 97, 2015, doi: 10.1016/j.actamat.2015.06.036. DOI: https://doi.org/10.1016/j.actamat.2015.06.036
Y. Zhai, H. Galarraga, and D. A. Lados, “Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques,” in Procedia Engineering, 2015. doi: 10.1016/j.proeng.2015.08.007. DOI: https://doi.org/10.1016/j.proeng.2015.08.007
L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe, “Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy,” Scr Mater, vol. 65, no. 1, 2011, doi: 10.1016/j.scriptamat.2011.03.024. DOI: https://doi.org/10.1016/j.scriptamat.2011.03.024
E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, “Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting,” Mater Charact, vol. 62, no. 5, 2011, doi: 10.1016/j.matchar.2011.03.006. DOI: https://doi.org/10.1016/j.matchar.2011.03.006
H. REN, X. TIAN, D. LIU, J. LIU, and H. WANG, “Microstructural evolution and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy,” Transactions of Nonferrous Metals Society of China, vol. 25, no. 6, pp. 1856–1864, 2015, doi: https://doi.org/10.1016/S1003-6326(15)63792-X. DOI: https://doi.org/10.1016/S1003-6326(15)63792-X
K. Bartkowiak, S. Ullrich, T. Frick, and M. Schmidt, “New developments of laser processing aluminium alloys via additive manufacturing technique,” in Physics Procedia, 2011. doi: 10.1016/j.phpro.2011.03.050. DOI: https://doi.org/10.1016/j.phpro.2011.03.050
C. Brice, R. Shenoy, M. Kral, and K. Buchannan, “Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing,” Materials Science and Engineering: A, vol. 648, 2015, doi: 10.1016/j.msea.2015.08.088. DOI: https://doi.org/10.1016/j.msea.2015.08.088
I. Rosenthal, A. Stern, and N. Frage, “Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by Selective Laser Melting,” Materials Science and Engineering: A, vol. 682, 2017, doi: 10.1016/j.msea.2016.11.070. DOI: https://doi.org/10.1016/j.msea.2016.11.070
P. Vora, K. Mumtaz, I. Todd, and N. Hopkinson, “AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting,” Addit Manuf, vol. 7, 2015, doi: 10.1016/j.addma.2015.06.003. DOI: https://doi.org/10.1016/j.addma.2015.06.003
L. E. Murr et al., “Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting,” Journal of Materials Research and Technology, vol. 1, no. 3, 2012, doi: 10.1016/S2238-7854(12)70029-7. DOI: https://doi.org/10.1016/S2238-7854(12)70029-7
M. J. K. Lodhi, K. M. Deen, M. C. Greenlee-Wacker, and W. Haider, “Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications,” Addit Manuf, vol. 27, 2019, doi: 10.1016/j.addma.2019.02.005. DOI: https://doi.org/10.1016/j.addma.2019.02.005
A. A. Shapiro et al., “Additive manufacturing for aerospace flight applications,” 2016. doi: 10.2514/1.A33544. DOI: https://doi.org/10.2514/1.A33544
D. W. Rosen, “What are principles for design for additive manufacturing?,” in Proceedings of the International Conference on Progress in Additive Manufacturing, 2014. doi: 10.3850/978-981-09-0446-3_027. DOI: https://doi.org/10.3850/978-981-09-0446-3_027
twiglobalWhatDesign, “What is Design for Manufacturing?,” https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-design-for-manufacture-dfm.
A. Wiberg, J. Persson, and J. Ölvander, “Design for additive manufacturing – a review of available design methods and software,” 2019. doi: 10.1108/RPJ-10-2018-0262. DOI: https://doi.org/10.1108/RPJ-10-2018-0262
T. Vaneker, A. Bernard, G. Moroni, I. Gibson, and Y. Zhang, “Design for additive manufacturing: Framework and methodology,” CIRP Annals, vol. 69, no. 2, 2020, doi: 10.1016/j.cirp.2020.05.006. DOI: https://doi.org/10.1016/j.cirp.2020.05.006
S. M. Korah, “A Review on Design Optimization for Additive Manufacturing,” in The 2nd Advanced Manufacturing Student Conference (AMSC22) Chemnitz, Germany 07–08 July 2022, 2022, p. 167.
M. Galetto, E. Verna, and G. Genta, “Effect of process parameters on parts quality and process efficiency of fused deposition modeling,” Comput Ind Eng, vol. 156, 2021, doi: 10.1016/j.cie.2021.107238. DOI: https://doi.org/10.1016/j.cie.2021.107238
Altair, “Generative Design and Topology Optimization ,” https://cdn2.hubspot.net/hubfs/47251/Altair_Generative_Design_Report.pdf .
D. Frank, R. L. Chandra, and R. Schmitt, “An Investigation of Cause-and-Effect Relationships Within a 3D-Printing System and the Applicability of Optimum Printing Parameters from Experimental Models to Different Printing Jobs,” 3D Print Addit Manuf, vol. 2, no. 3, 2015, doi: 10.1089/3dp.2015.0010. DOI: https://doi.org/10.1089/3dp.2015.0010
A. Jaisingh Sheoran and H. Kumar, “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research,” in Materials Today: Proceedings, 2020. doi: 10.1016/j.matpr.2019.11.296. DOI: https://doi.org/10.1016/j.matpr.2019.11.296
A. K. Sood, R. K. Ohdar, and S. S. Mahapatra, “Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method,” Mater Des, vol. 30, no. 10, 2009, doi: 10.1016/j.matdes.2009.04.030. DOI: https://doi.org/10.1016/j.matdes.2009.04.030
R. Singh, S. Singh, I. P. Singh, F. Fabbrocino, and F. Fraternali, “Investigation for surface finish improvement of FDM parts by vapor smoothing process,” Compos B Eng, vol. 111, 2017, doi: 10.1016/j.compositesb.2016.11.062. DOI: https://doi.org/10.1016/j.compositesb.2016.11.062
A. W. Hashmi, H. S. Mali, and A. Meena, “The Surface Quality Improvement Methods for FDM Printed Parts: A Review,” 2021. doi: 10.1007/978-3-030-68024-4_9. DOI: https://doi.org/10.1007/978-3-030-68024-4_9
J. Jiang, X. Xu, and J. Stringer, “Support structures for additive manufacturing: A review,” 2018. doi: 10.3390/jmmp2040064. DOI: https://doi.org/10.3390/jmmp2040064
B. Esakki, N. Sagar, C. .U, and S. Salunkhe, “Development of light weight multi-rotor UAV structures through synergistic application of design analysis and fused deposition modelling,” International Journal of Materials and Product Technology, vol. 59, pp. 229–238, Jul. 2019, doi: 10.1504/IJMPT.2019.10024474. DOI: https://doi.org/10.1504/IJMPT.2019.10024474
H. Klippstein, A. D. D. C. Sanchez, H. Hassanin, Y. H. Zweiri, and L. D. Seneviratne, “Fused deposition modelling for unmanned aerial vehicles : a review,” 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:59371856 DOI: https://doi.org/10.1002/adem.201700552
S. Nvss, B. Esakki, L.-J. Yang, C. Udayagiri, and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Designs (Basel), vol. 6, no. 1, 2022, doi: 10.3390/designs6010008. DOI: https://doi.org/10.3390/designs6010008
B. Al-Mangour, Additive Manufacturing of Emerging Materials. 2019. doi: 10.1007/978-3-319-91713-9. DOI: https://doi.org/10.1007/978-3-319-91713-9
D. M. Gerstein and E. N. Leidy, Emerging Technology and Risk Analysis: Additive Manufacturing. Santa Monica, CA: RAND Corporation, 2024. doi: 10.7249/RRA2984-1. DOI: https://doi.org/10.7249/RRA2984-1
W. Choi, R. Advincula, H. Wu, and Y. Jiang, “Artificial intelligence and machine learning in the design and additive manufacturing of responsive composites,” MRS Commun, vol. 13, Jul. 2023, doi: 10.1557/s43579-023-00473-9. DOI: https://doi.org/10.1557/s43579-023-00473-9
S. Yoo, S. Lee, S. Kim, K.-H. Hwang, J. Park, and N. Kang, “Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel,” Structural and Multidisciplinary Optimization, vol. 64, Jul. 2021, doi: 10.1007/s00158-021-02953-9. DOI: https://doi.org/10.1007/s00158-021-02953-9
F. Ciccone, A. Bacciaglia, and A. Ceruti, “Optimization with artificial intelligence in additive manufacturing: a systematic review,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, Jul. 2023, doi: 10.1007/s40430-023-04200-2. DOI: https://doi.org/10.1007/s40430-023-04200-2
R. Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo, and F. De Felice, “Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions,” Sustainability, vol. 12, no. 2, 2020, doi: 10.3390/su12020492. DOI: https://doi.org/10.3390/su12020492
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.