Thermal Conductivity of Nanofluid, a Mini Review

Authors

  • Ayad Dari Jaafar Chemical Engineering Department, University of Technology, Baghdad, Iraq Author
  • Dhiyaa A. Hussein Al-Timimi Chemical Engineering Department, University of Technology, Baghdad, Iraq Author
  • Mohammed Jaafar Ali Alatabe Environmental Engineering Department, University of Mustansiriyah, Baghdad, Iraq Author
  • Mohammed Shorbaz Chemical Engineering Department, University of Technology, Baghdad, Iraq Author
  • Ban kadhim Abed Chemical Engineering Department, University of Technology, Baghdad, Iraq Author

DOI:

https://doi.org/10.32628/IJSRSET24114110

Keywords:

Nanofluid, Thermal Conductivity, Properties, Review

Abstract

The rapid development of the world and the increasing need to increase the efficiency of devices in many applications has led to the development of fluid conductivity with more efficient heat transfer has made it necessary to enhance heat transfer to meet the cooling challenge, as is the case in the photonics, electronics, power supply and transportation industries. Nanofluids and methods for measuring them have been developed and studied to facilitate the interpretation of their behavior, including thermal behavior. The study aimed to gain a fundamental and experimental understanding of the thermal behavior of nanofluids by examining thermal conductivity, preparation techniques, stability-enhancing agents, and measurement techniques. With changes in shape, concentration, and temperature, nanofluids exhibit significantly improved thermal conductivity. In addition, efforts have been made to introduce new and accurate correlations for estimating thermal conductivity at different concentrations and temperatures.

Downloads

Download data is not yet available.

References

V. Y. Rudyak and A. V Minakov, “Thermophysical properties of nanofluids,” Eur. Phys. J. E, vol. 41, no. 1, pp. 1–12, 2018. DOI: https://doi.org/10.1140/epje/i2018-11616-9

E. V Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, and J. L. Routbort, “Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids,” Nanotechnology, vol. 21, no. 21, p. 215703, 2010. DOI: https://doi.org/10.1088/0957-4484/21/21/215703

V. Y. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, and E. I. Kauppinen, “Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas,” in Doklady Physics, Nauka/Interperiodica Moscow, 2002, pp. 758–761. DOI: https://doi.org/10.1134/1.1519325

V. Y. Rudyak, S. V Dimov, and V. V Kuznetsov, “On the dependence of the viscosity coefficient of nanofluids on particle size and temperature,” Tech. Phys. Lett., vol. 39, pp. 779–782, 2013. DOI: https://doi.org/10.1134/S1063785013090125

A. V Minakov, V. Y. Rudyak, and M. I. Pryazhnikov, “Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 554, pp. 279–285, 2018. DOI: https://doi.org/10.1016/j.colsurfa.2018.06.051

H. A. Jabbar and M. J. A. Alatabe, “Treatment Oilfield Produced Water using Coagulation/Flocculation Process (case study: Alahdab Oilfield),” Pollution, vol. 7, no. 4, pp. 787–797, 2021.

A. V. Rane, K. Kanny, V. K. Abitha, and S. Thomas, “Methods for synthesis of nanoparticles and fabrication of nanocomposites,” in Synthesis of inorganic nanomaterials, Elsevier, 2018, pp. 121–139. DOI: https://doi.org/10.1016/B978-0-08-101975-7.00005-1

M. H. Buschmann et al., “Correct interpretation of nanofluid convective heat transfer,” Int. J. Therm. Sci., vol. 129, pp. 504–531, 2018. DOI: https://doi.org/10.1016/j.ijthermalsci.2017.11.003

F. Alizadeh, M. Ghorbanpour, and M. J. A. Alatabe, “Dye adsorption onto iron oxide prepared by green method mediated by leaf extract of Falcaria vulgaris,” Indian Chem. Eng., pp. 1–12, 2024. DOI: https://doi.org/10.1080/00194506.2024.2335332

S. J. Marrink, X. Periole, D. P. Tieleman, and A. H. de Vries, “Comment on ‘On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models’ by M. Winger, D. Trzesniak, R. Baron and WF van Gunsteren, Phys. Chem. Chem. Phys., 2009, 11, 1934,” Phys. Chem. Chem. Phys., vol. 12, no. 9, pp. 2254–2256, 2010. DOI: https://doi.org/10.1039/b915293h

S. E. Ouldboukhitine, R. Belarbi, I. Jaffal, and A. Trabelsi, “Assessment of green roof thermal behavior: A coupled heat and mass transfer model,” Build. Environ., vol. 46, no. 12, pp. 2624–2631, 2011. DOI: https://doi.org/10.1016/j.buildenv.2011.06.021

A. D. Jaafar, B. J. Kadhim, and A. A. Abtan, “Simulation of Convert Shale Oil to Oil by Renewable Energies by COMSOL,” Simulation, vol. 44, no. 3, pp. 66–74.

S. B. Rutin and P. V Skripov, “Comments on ‘the apparent thermal conductivity of liquids containing solid particles of nanometer dimensions: a critique’(Int. J. Thermophys. 36, 1367 (2015)),” Int. J. Thermophys., vol. 37, no. 10, pp. 1–6, 2016. DOI: https://doi.org/10.1007/s10765-016-2108-3

P. Keblinski, R. Prasher, and J. Eapen, “Thermal conductance of nanofluids: is the controversy over?,” J. Nanoparticle Res., vol. 10, no. 7, pp. 1089–1097, 2008. DOI: https://doi.org/10.1007/s11051-007-9352-1

S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Argonne National Lab.(ANL), Argonne, IL (United States), 1995.

K. Y. Leong, R. Saidur, S. N. Kazi, and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator),” Appl. Therm. Eng., vol. 30, no. 17–18, pp. 2685–2692, 2010. DOI: https://doi.org/10.1016/j.applthermaleng.2010.07.019

V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renew. Sustain. energy Rev., vol. 11, no. 3, pp. 512–523, 2007. DOI: https://doi.org/10.1016/j.rser.2005.01.010

S. Özerinç, S. Kakaç, and A. G. Yazıcıoğlu, “Enhanced thermal conductivity of nanofluids: a state-of-the-art review,” Microfluid. Nanofluidics, vol. 8, no. 2, pp. 145–170, 2010. DOI: https://doi.org/10.1007/s10404-009-0524-4

M. U. Sajid and H. M. Ali, “Recent advances in application of nanofluids in heat transfer devices: a critical review,” Renew. Sustain. Energy Rev., vol. 103, pp. 556–592, 2019. DOI: https://doi.org/10.1016/j.rser.2018.12.057

R. Saidur, K. Y. Leong, and H. A. Mohammed, “A review on applications and challenges of nanofluids,” Renew. Sustain. energy Rev., vol. 15, no. 3, pp. 1646–1668, 2011. DOI: https://doi.org/10.1016/j.rser.2010.11.035

L. Qiu et al., “A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids,” Phys. Rep., vol. 843, pp. 1–81, 2020. DOI: https://doi.org/10.1016/j.physrep.2019.12.001

Y. Hwang et al., “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta, vol. 455, no. 1–2, pp. 70–74, 2007. DOI: https://doi.org/10.1016/j.tca.2006.11.036

H. Mamat and M. Ramadan, “Nanofluids: Thermal Conductivity and Applications,” 2022. DOI: https://doi.org/10.1016/B978-0-12-815732-9.00141-8

J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity through the development of nanofluids,” MRS Online Proc. Libr., vol. 457, 1996. DOI: https://doi.org/10.1557/PROC-457-3

M. J. A. Alatabe, “Ultraviolet Radiation for Phenol Removal from Aqueous Solutions by Copper Oxide Nanoparticles in Advanced Oxidation Process,” Iran. J. Chem. Chem. Eng. Res. Artic. Vol, vol. 42, no. 2, 2023.

M. J. A. Alatabe, “Photocatalytic Degradation of Oxamyl Pesticide by Adsorption using Bentonite/Titanium Dioxide Nanocomposite doped with Nickel.,” Desalin. Water Treat., p. 100050, 2024. DOI: https://doi.org/10.1016/j.dwt.2024.100050

X. Wang and D. Zhu, “Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids,” Chem. Phys. Lett., vol. 470, no. 1–3, pp. 107–111, 2009. DOI: https://doi.org/10.1016/j.cplett.2009.01.035

A. R. I. Ali and B. Salam, “A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application,” SN Appl. Sci., vol. 2, no. 10, pp. 1–17, 2020. DOI: https://doi.org/10.1007/s42452-020-03427-1

M. jaafar Al-atabi, “A Novel Approach for Adsorption of Copper (II) Ions from Wastewater Using Cane Papyrus,” Int. J. Integr. Eng., vol. 10, no. 1, 2018. DOI: https://doi.org/10.30880/ijie.2018.10.01.015

S. Lee, S.-S. Choi, S. Li and, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” 1999. DOI: https://doi.org/10.1115/1.2825978

J. C. Maxwell, A treatise on electricity and magnetism, vol. 1. Clarendon press, 1873.

M. J. A. Alatabe and M. Ghorbanpour, “A Performance Comparison of Photo-Fenton Decolorization of Methylene Blue by using Bentonite/Iron Composites prepared by Liquid Phase and Solid Phase Ion Exchange Method,” Desalin. Water Treat., p. 100027, 2024. DOI: https://doi.org/10.1016/j.dwt.2024.100027

A. K. Singh, “Thermal conductivity of nanofluids,” Def. Sci. J., vol. 58, no. 5, p. 600, 2008. DOI: https://doi.org/10.14429/dsj.58.1682

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001. DOI: https://doi.org/10.1063/1.1341218

H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” J. Appl. Phys., vol. 91, no. 7, pp. 4568–4572, 2002. DOI: https://doi.org/10.1063/1.1454184

S. Ashley, “Small-scale structure yields big property payoffs,” Mech. Eng., vol. 116, no. 2, p. 52, 1994.

M. J. A. Alatabe, “Oil adsorption from produced water onto Coronavirus Face Masks waste,” Indian Chem. Eng., pp. 1–14, 2023. DOI: https://doi.org/10.1080/00194506.2023.2254304

K. D. Antoniadis, G. J. Tertsinidou, M. J. Assael, and W. A. Wakeham, “Necessary conditions for accurate, transient hot-wire measurements of the apparent thermal conductivity of nanofluids are seldom satisfied,” Int. J. Thermophys., vol. 37, no. 8, p. 78, 2016. DOI: https://doi.org/10.1007/s10765-016-2083-8

G. Tertsinidou, M. J. Assael, and W. A. Wakeham, “The apparent thermal conductivity of liquids containing solid particles of nanometer dimensions: a critique,” Int. J. Thermophys., vol. 36, no. 7, pp. 1367–1395, 2015. DOI: https://doi.org/10.1007/s10765-015-1856-9

A. Bavi, M. Ghorbanpour, and M. J. Ali Alatabe, “Adsorption, isotherms and kinetics characteristics of solid state Mg exchanged bentonite for removal of methylene blue,” J. Water Environ. Nanotechnol., vol. 8, no. 4, pp. 396–405, 2023.

F. E. Berger Bioucas, M. H. Rausch, J. Schmidt, A. Bück, T. M. Koller, and A. P. Fröba, “Effective thermal conductivity of nanofluids: measurement and prediction,” Int. J. Thermophys., vol. 41, no. 5, pp. 1–27, 2020. DOI: https://doi.org/10.1007/s10765-020-2621-2

J. I. Prado, U. Calviño, and L. Lugo, “Experimental methodology to determine thermal conductivity of nanofluids by using a commercial transient hot-wire device,” Appl. Sci., vol. 12, no. 1, p. 329, 2021. DOI: https://doi.org/10.3390/app12010329

S. M. S. Murshed and C. A. N. de Castro, “Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids–a review,” Appl. Energy, vol. 184, pp. 681–695, 2016. DOI: https://doi.org/10.1016/j.apenergy.2016.11.017

C. A. Nieto de Castro and M. J. V Lourenço, “Towards the Correct Measurement of Thermal Conductivity of Ionic Melts and Nanofluids,” Energies, vol. 13, no. 1, p. 99, 2019. DOI: https://doi.org/10.3390/en13010099

Y. Li, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technol., vol. 196, no. 2, pp. 89–101, 2009. DOI: https://doi.org/10.1016/j.powtec.2009.07.025

A. A. A. Ayad Dari Jaafar†, Bashar Jawad Kadhim†, “Shale Oil.” Journal of Mechanical Engineering Research and Developments ISSN: 1024-1752 CODEN: JERDFO Vol. 44, No. 3, pp. 66-74 Published Year 2021 Simulation, Iraq, 2021. doi: 10.1201/b16782-13. DOI: https://doi.org/10.1201/b16782-13

M. Boujelbene, E. Bayraktar, W. Tebni, and S. Ben Salem, “Influence of machining parameters on the surface integrity in electrical discharge machining,” Arch. Mater. Sci. Eng., vol. 37, no. 2, pp. 110–116, 2009.

M. Ibrahim, A. A. AbdulRazak, and A. D. Jaafar, “Removal of Copper (II) from Wastewater Using Modified Carbon Nanotubes,” Eng. Technol. J., vol. 31, no. 12 Part (A) Engineering, 2013. DOI: https://doi.org/10.30684/etj.31.12A.2

A. A. A. Ayad Dari Jaafar, Mohammed Ibrahim, “Removel of cooper.pdf.” Eng. &Tech. Journal, Vol.31, Part (A), No.12, 2013 Removal, Iraq.

J. Liu, L. Zhou, G. Wu, Y. Zhao, P. Liu, and Q. Peng, “Dielectric frequency response of oil-paper composite insulation modified by nanoparticles,” IEEE Trans. Dielectr. Electr. Insul., vol. 19, no. 2, pp. 510–520, 2012. DOI: https://doi.org/10.1109/TDEI.2012.6180245

Y. Z. Lv, Y. Zhou, C. R. Li, Q. Wang, and B. Qi, “Recent progress in nanofluids based on transformer oil: preparation and electrical insulation properties,” IEEE Electr. Insul. Mag., vol. 30, no. 5, pp. 23–32, 2014. DOI: https://doi.org/10.1109/MEI.2014.6882597

W. Yu and H. Xie, “A review on nanofluids: preparation, stability mechanisms, and applications,” J. Nanomater., vol. 2012, 2012. DOI: https://doi.org/10.1155/2012/435873

M. J. A. Alatabe, H. A. Faris, and H. Husham, “Natural Biosorbent for Oil Adsorption from Produced Water by Sedge Cane,” J. Ecol. Eng..

W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transf., vol. 51, no. 5–6, pp. 1431–1438, 2008. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017

D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, “Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids,” Curr. Appl. Phys., vol. 9, no. 1, pp. 131–139, 2009. DOI: https://doi.org/10.1016/j.cap.2007.12.008

M. Chandrasekar, S. Suresh, and A. C. Bose, “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid,” Exp. Therm. Fluid Sci., vol. 34, no. 2, pp. 210–216, 2010. DOI: https://doi.org/10.1016/j.expthermflusci.2009.10.022

R. Y. Saber, M. J. Alatabe, and N. O. Karim, “Photocatalytic homogeneous and heterogeneous processes for polluted water from the northern oilfields in Iraq,” J. Ecol. Eng., vol. 24, no. 9, 2023. DOI: https://doi.org/10.12911/22998993/169180

A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transf., vol. 54, no. 17–18, pp. 4051–4068, 2011. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

S. Chakraborty and P. K. Panigrahi, “Stability of nanofluid: A review,” Appl. Therm. Eng., vol. 174, p. 115259, 2020. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115259

V. Fuskele and R. M. Sarviya, “Recent developments in nanoparticles synthesis, preparation and stability of nanofluids,” Mater. Today Proc., vol. 4, no. 2, pp. 4049–4060, 2017. DOI: https://doi.org/10.1016/j.matpr.2017.02.307

M. A. R. Hameed and M. J. A. Alatabe, “Elimination of hexavalent chromium from polluted water using specific type of bentonite clay as adsorbent,” Int. J. Environ. Waste Manag., vol. 29, no. 4, pp. 377–390, 2022. DOI: https://doi.org/10.1504/IJEWM.2022.124686

J. Ji, X. Yao, J. Gao, W. Lu, W. Wang, and D. Chu, “Effect of surfactants and pH values on stability of γ-Al2O3 nanofluids,” Chem. Phys. Lett., vol. 781, p. 138996, 2021. DOI: https://doi.org/10.1016/j.cplett.2021.138996

S. Umar, F. Sulaiman, N. Abdullah, and S. N. Mohamad, “Investigation of the effect of pH adjustment on the stability of nanofluid,” in AIP conference proceedings, AIP Publishing, 2018. DOI: https://doi.org/10.1063/1.5066987

M. Z. Sharif, W. H. Azmi, A. A. M. Redhwan, N. N. M. Zawawi, and R. Mamat, “Improvement of Nanofluid stability using 4-Step UV-Vis Spectral Absorbency Analysis.,” J. Mech. Eng., vol. 14, 2017.

B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf. an Int. J., vol. 11, no. 2, pp. 151–170, 1998. DOI: https://doi.org/10.1080/08916159808946559

H. Chouirfa, H. Bouloussa, V. Migonney, and C. Falentin-Daudré, “Review of titanium surface modification techniques and coatings for antibacterial applications,” Acta Biomater., vol. 83, pp. 37–54, 2019. DOI: https://doi.org/10.1016/j.actbio.2018.10.036

L. Kong, J. Sun, and Y. Bao, “Preparation, characterization and tribological mechanism of nanofluids,” Rsc Adv., vol. 7, no. 21, pp. 12599–12609, 2017. DOI: https://doi.org/10.1039/C6RA28243A

A. A. Hussein and M. J. A. Alatabe, “Remediation of lead-contaminated soil, Using clean energy in combination with electro-kinetic methods,” Pollution, vol. 5, no. 4, pp. 859–869, 2019, doi: 10.22059/poll.2019.275250.579.

V. Bohac, M. K. Gustavsson, L. Kubicar, and S. E. Gustafsson, “Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer,” Rev. Sci. Instrum., vol. 71, no. 6, pp. 2452–2455, 2000. DOI: https://doi.org/10.1063/1.1150635

X. F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao, and H. Li, “Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids,” Thermochim. Acta, vol. 469, no. 1–2, pp. 98–103, 2008. DOI: https://doi.org/10.1016/j.tca.2008.01.008

W. Jiang, G. Ding, and H. Peng, “Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants,” Int. J. Therm. Sci., vol. 48, no. 6, pp. 1108–1115, 2009. DOI: https://doi.org/10.1016/j.ijthermalsci.2008.11.012

D. W. Oh, A. Jain, J. K. Eaton, K. E. Goodson, and J. S. Lee, “Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1456–1461, 2008. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007

H. J. Hadi, K. M. M. Al-Zobai, and M. J. A. Alatabe, “Oil removal from produced water using Imperata cylindrica as low-cost adsorbent,” Curr. Appl. Sci. Technol., vol. 20, no. 3, pp. 494–511, 2020, doi: 10.14456/cast.2020.33.

M. Chopkar, P. K. Das, and I. Manna, “Synthesis and characterization of nanofluid for advanced heat transfer applications,” Scr. Mater., vol. 55, no. 6, pp. 549–552, 2006. DOI: https://doi.org/10.1016/j.scriptamat.2006.05.030

H. A. J. Alkhazraji and M. J. A. Alatabe, “Oil Recovery from Oilfield Produced Water Using Zinc Oxide Nano Particle as Catalyst in Batch and Continuous System,” J. Ecol. Eng., vol. 22, no. 8, 2021. DOI: https://doi.org/10.12911/22998993/140281

A. T. Utomo, H. Poth, P. T. Robbins, and A. W. Pacek, “Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids,” Int. J. Heat Mass Transf., vol. 55, no. 25–26, pp. 7772–7781, 2012. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003

C. A. Angell and S. Borick, “Specific heats Cp, Cv, Cconf and energy landscapes of glassforming liquids,” J. Non. Cryst. Solids, vol. 307, pp. 393–406, 2002. DOI: https://doi.org/10.1016/S0022-3093(02)01500-4

E. V Timofeeva, W. Yu, D. M. France, D. Singh, and J. L. Routbort, “Nanofluids for heat transfer: an engineering approach,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–7, 2011. DOI: https://doi.org/10.1186/1556-276X-6-182

M. J. A. Alatabe, M. A. R. Hameed, and K. M. M. Al-zobai, “Exfoliate apricot kernels, natural low-cost bio-sorbent for rapid and efficient adsorption of CN- ions from aqueous solutions. Isotherm, kinetic and thermodynamic models,” Int. J. Appl. Sci. Eng., vol. 18, no. 5, pp. 1–11, 2021, doi: 10.6703/ijase.202109_18(5).003. DOI: https://doi.org/10.6703/IJASE.202109_18(5).003

S. Alidoust, F. AmoozadKhalili, and S. Hamedi, “Investigation of effective parameters on relative thermal conductivity of SWCNT (15%)-Fe3O4 (85%)/water hybrid ferro-nanofluid and presenting a new correlation with response surface methodology,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 645, p. 128625, 2022. DOI: https://doi.org/10.1016/j.colsurfa.2022.128625

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3) thermal conductivity enhancement,” Appl. Phys. Lett., vol. 87, no. 15, p. 153107, 2005. DOI: https://doi.org/10.1063/1.2093936

H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, “New temperature dependent thermal conductivity data for water-based nanofluids,” Int. J. Therm. Sci., vol. 48, no. 2, pp. 363–371, 2009. DOI: https://doi.org/10.1016/j.ijthermalsci.2008.03.009

M. J. A. Alatabe and A. A. Hussein, “Utilization of Low-Cost Adsorbents for the Adsorption Process of Chromium ions.,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 12095. DOI: https://doi.org/10.1088/1757-899X/1076/1/012095

A. S. Ahuja, “Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results,” J. Appl. Phys., vol. 46, no. 8, pp. 3408–3416, 1975. DOI: https://doi.org/10.1063/1.322107

S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transf., vol. 125, no. 4, pp. 567–574, 2003. DOI: https://doi.org/10.1115/1.1571080

S. U. S. Choi, Z. G. Zhang, Wl. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2252–2254, 2001. DOI: https://doi.org/10.1063/1.1408272

T. K. Hong, H.-S. Yang, and C. J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids,” J. Appl. Phys., vol. 97, no. 6, p. 64311, 2005. DOI: https://doi.org/10.1063/1.1861145

M. J. A. Alatabe and Z. T. Al-Sharify, “Utilization of low cost adsorbents for the adsorption process of lead ions,” Int. J. Mod. Res. Eng. Technol., vol. 4, no. 11, pp. 29–48, 2019.

J. Lee, H. Lee, Y.-J. Baik, and J. Koo, “Quantitative analyses of factors affecting thermal conductivity of nanofluids using an improved transient hot-wire method apparatus,” Int. J. Heat Mass Transf., vol. 89, pp. 116–123, 2015. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.064

K. N. Shukla, T. M. Koller, M. H. Rausch, and A. P. Fröba, “Effective thermal conductivity of nanofluids–a new model taking into consideration Brownian motion,” Int. J. Heat Mass Transf., vol. 99, pp. 532–540, 2016. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.129

J. Koo and C. Kleinstreuer, “Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids,” Int. Commun. heat mass Transf., vol. 32, no. 9, pp. 1111–1118, 2005. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2005.05.014

L. Yang, W. Ji, J. Huang, and G. Xu, “An updated review on the influential parameters on thermal conductivity of nano-fluids,” J. Mol. Liq., vol. 296, p. 111780, 2019. DOI: https://doi.org/10.1016/j.molliq.2019.111780

M. M. Tawfik, “Experimental studies of nanofluid thermal conductivity enhancement and applications: A review,” Renew. Sustain. Energy Rev., vol. 75, pp. 1239–1253, 2017. DOI: https://doi.org/10.1016/j.rser.2016.11.111

F. Esmaeilzadeh, A. S. Teja, and A. Bakhtyari, “The thermal conductivity, viscosity, and cloud points of bentonite nanofluids with n-pentadecane as the base fluid,” J. Mol. Liq., vol. 300, p. 112307, 2020. DOI: https://doi.org/10.1016/j.molliq.2019.112307

M. J. A. Al-atabe and A. A. Hussein, “Adsorption of Nickel Ions From Aqueaus Solution Using Natural Clay,” ALNAHRAIN J. Eng. Sci., vol. 21, no. 2, pp. 223–229, 2018. DOI: https://doi.org/10.29194/NJES21020223

H. Wang, Z. Rao, W. Wang, and S. Liao, “A reconstruction of Hamilton-Crosser model for effective thermal conductivity of nanofluids based on particle clustering and nanolayer formation,” Case Stud. Therm. Eng., vol. 26, p. 101051, 2021. DOI: https://doi.org/10.1016/j.csite.2021.101051

H. Zhu, C. Zhang, S. Liu, Y. Tang, and Y. Yin, “Effects of nanoparticle clustering and alignment on thermal conductivities of Fe 3 O 4 aqueous nanofluids,” Appl. Phys. Lett., vol. 89, no. 2, p. 23123, 2006. DOI: https://doi.org/10.1063/1.2221905

M. J. Alatabe, “Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus,” Pollution, vol. 4, no. 4, pp. 649–662, 2018, doi: DOI: 10.22059/poll.2018.249931.377.

M. H. Esfe, W.-M. Yan, M. Afrand, M. Sarraf, D. Toghraie, and M. Dahari, “Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data,” Int. Commun. Heat Mass Transf., vol. 74, pp. 125–128, 2016. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.02.002

H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren, and Y. Yin, “Preparation and thermal conductivity of suspensions of graphite nanoparticles,” Carbon N. Y., vol. 45, no. 1, pp. 226–228, 2007. DOI: https://doi.org/10.1016/j.carbon.2006.07.005

Downloads

Published

05-08-2024

Issue

Section

Research Articles

How to Cite

[1]
Ayad Dari Jaafar, Dhiyaa A. Hussein Al-Timimi, Mohammed Jaafar Ali Alatabe, Mohammed Shorbaz, and Ban kadhim Abed, “Thermal Conductivity of Nanofluid, a Mini Review”, Int J Sci Res Sci Eng Technol, vol. 11, no. 4, pp. 176–188, Aug. 2024, doi: 10.32628/IJSRSET24114110.

Similar Articles

1-10 of 38

You may also start an advanced similarity search for this article.