Theoretical Review of Weight Functions for Rigid Line Inclusions: Implications for Stress Singularities and Crack Propagation

Authors

  • Charitidis J. Panagiotis Department of Environmental Engineering, Democritus University, Xanthi, Xanthi, Greece Author

DOI:

https://doi.org/10.32628/IJSRSET2411589

Keywords:

Rigid Line Inclusions, Weight Functions, Stress Intensity Factors, Crack-Inclusion Interaction, Fracture Mechanics, Energy Release Rates

Abstract

A comprehensive theoretical analysis of weight functions for rigid line inclusions in elastic materials is presented. Classical fracture mechanics approaches were extended to accurately predict stress intensity factors (SIFs) at the tips of these inclusions, which are crucial for understanding material failure. The analysis covered both static and dynamic loading conditions, including transient Mode-III problems. Weight functions for various deformation modes were derived, and the impact of rigid line inclusions on stress singularities and crack propagation was explored. These insights are valuable for the design and analysis of composite structures and materials subjected to dynamic loading.

Downloads

Download data is not yet available.

References

J.E. Li, 2022. Multiple rigid line inclusions (anti-cracks) in a multilayered orthotropic medium under anti-plane loading. Z. Angew. Math. Phys., 73: 40. https://doi.org/10.1007/s00033-021-01658-9. DOI: https://doi.org/10.1007/s00033-021-01658-9

L. Ma, B. Wang, and A.M. Korsunsky. 2018. Complex variable formulation for a rigid line inclusion interacting with a generalized singularity. Arch Appl Mech., 88: 613–627. https://doi.org/10.1007/s00419-017-1330-1. DOI: https://doi.org/10.1007/s00419-017-1330-1

H.F. Bueckner, 1987. Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three space. International Journal of Solids Structures, 23(1): 57-93. DOI: https://doi.org/10.1016/0020-7683(87)90032-1

G. Noselli, F. Dal Corso, and D. Bigoni. 2010. The stress intensity near a stiffener disclosed by photoelasticity. International Journal of Fracture, 166: 91–103. DOI: https://doi.org/10.1007/978-94-007-0314-8_10

Z.P. Bažant, J.L. Le, and M. Salviato, 2021. Fundamentals of linear elastic fracture mechanics. In: Quasibrittle Fracture Mechanics and Size Effect: A First Course. Oxford Academic. https://doi.org/10.1093/oso/9780192846242.003.0002. Accessed 21 Sept. 2024. DOI: https://doi.org/10.1093/oso/9780192846242.001.0001

P. Paris and G. Sih, 1965. Stress analysis of cracks. In Fracture Toughness Testing and its Applications, Ed. ASTM Committee E-24. ASTM International, West Conshohocken, PA. DOI: https://doi.org/10.1520/STP26584S

Z.Y. Wang, H.T. Zhang, and Y.T. Chou. 1985. Characteristics of the elastic field of a rigid line inhomogeneity. Journal of Applied Mechanics, 52: 818–822. DOI: https://doi.org/10.1115/1.3169152

R. Ballarini. 1987. An integral equation approach for rigid line inhomogeneity problems. International Journal of Fracture, 33: 23-26. DOI: https://doi.org/10.1007/BF00033747

P.S. Theocaris, and S.A. Paipetis. 1976a. State of stress around inhomogeneities by the method of caustics. Fibre Science and Technology, 9: 19-39. DOI: https://doi.org/10.1016/0015-0568(76)90021-X

P.S. Theocaris, and S.A. Paipetis. 1976b. Constrained zones at singular points of inclusion contours. International Journal of Mechanical Sciences, 18: 581-587.

P.S. Theocaris, and S.A. Paipetis. 1976b. Constrained zones at singular points of inclusion contours. International Journal of Mechanical Sciences, 18: 581-587. DOI: https://doi.org/10.1016/0020-7403(76)90085-0

J.F. Orr and J.B. Finlay, 1997. Photoelastic stress analysis. In Optical Measurement Methods in Biomechanics, Ed. Orr, J.F., Shelton, J.C. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-35228-2_1. DOI: https://doi.org/10.1007/978-0-585-35228-2_1

T.M. Jobin, M. Ramji, and S.N. Khaderi. 2019. Numerical evaluation of the interaction of rigid line inclusions using strain intensity factors. International Journal of Mechanical Sciences, 153-154: 10-20. DOI: https://doi.org/10.1016/j.ijmecsci.2019.01.017

R. Harilal, C.P. Vyasarayani, and M. Ramji. 2015. A linear least squares approach for evaluation of crack tip stress field parameters using DIC. Optics and Lasers in Engineering, 75: 95-102. DOI: https://doi.org/10.1016/j.optlaseng.2015.07.004

P. Lopez-Crespo, A. Shterenlikht, E. Patterson, J. Yates, and P. Withers. 2008. The stress intensity of mixed mode cracks determined by digital image correlation. The Journal of Strain Analysis for Engineering Design, 43(8): 769-780. DOI: https://doi.org/10.1243/03093247JSA419

S.E. Sanborn, and J.H. Prévost. 2008. Discrete modeling of crack bridging by a discontinuous platelet with a controlled interface. International Journal of Solids and Structures, 45(18-19): 5059–5073. DOI: https://doi.org/10.1016/j.ijsolstr.2008.05.008

C. Atkinson. 1973. Some ribbon-like inclusion problems. International Journal of Engineering Science, 11(2): 243–266. DOI: https://doi.org/10.1016/0020-7225(73)90050-5

Y.Z. Chen. 1986. Singular behaviour at fixed rigid line tip in plane elasticity. Engineering Fracture Mechanics, 25(1): 11–16. DOI: https://doi.org/10.1016/0013-7944(86)90198-0

J. Dundurs, and X. Markenscoff. 1989. A Green’s Function Formulation of Anticracks and Their Interaction with Load-Induced Singularities. Journal of Applied Mechanics, 56(3): 550-555. DOI: https://doi.org/10.1115/1.3176126

L. Gorbatikh, S. V. Lomov and I. Verpoest, 2010. Relation Between Elastic Properties and Stress Intensity Factors for Composites with Rigid-Line Reinforcements. International Journal of Fracture, 161: 205–212. https://doi.org/10.1007/s10704-009-9433-5. DOI: https://doi.org/10.1007/s10704-009-9433-5

C. Dong, S. Lo and Y. Cheung. 2003. Interaction between cracks and rigid-line inclusions by an integral equation approach. Computational Mechanics, 31: 238–252. https://doi.org/10.1007/s00466-003-0427-2. DOI: https://doi.org/10.1007/s00466-003-0427-2

D. Misseroni, F. Dal Corso, S. Shahzad, and D. Bigoni. 2013. Stress concentration near stiff inclusions: validation of rigid inclusion model and boundary layers by means of photoelasticity. arXiv:1309.1091. DOI: https://doi.org/10.1016/j.engfracmech.2014.03.004

N. Zhang, X. Xiang and L. Ma, 2021. On the crack-tip stress field due to the presence of isotropic dilatational inclusion: theoretical and numerical analysis. Archives of Applied Mechanics, 91: 2893–2905. https://doi.org/10.1007/s00419-021-01941-1. DOI: https://doi.org/10.1007/s00419-021-01941-1

D. Veber, and D. Bigoni. 2021. Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Journal of the Mechanics and Physics of Solids, 181: 105452.

G.P. Sendeckyj. 1970. Elastic inclusion problems in plane and three-dimensional elasticity. International Journal of Solids and Structures, 6(12): 1535-1543. DOI: https://doi.org/10.1016/0020-7683(70)90062-4

S. Tamate. 1968. Some problems of fracture mechanics. International Journal of Fracture Mechanics, 4: 257. DOI: https://doi.org/10.1007/BF00185261

G. Plato. 1971. Title of the Article. Zeitschrift für Angewandte Mathematik und Mechanik, 51: 407. DOI: https://doi.org/10.1002/zamm.19710510510

T. Fett, 2008. Stress Intensity Factors – T-Stresses – Weight Functions. Institute of Ceramics in Mechanical Engineering (IKM), University of Karlsruhe (TH), p. XVO, 362P. ISSN: 1436-3488, doi: 10.5445/KSP/1000007996.

T. Fett, 1998. Stress Intensity Factors and Weight Functions for Special Crack Problems. Institut für Materialforschung.

Yukitaka Murakami, 2017. Theory of Elasticity and Stress Concentration. Chichester, West Sussex, United Kingdom: Wiley.

Yukitaka Murakami, 2017. Theory of Elasticity and Stress Concentration. Chichester, West Sussex, United Kingdom: Wiley. DOI: https://doi.org/10.1002/9781119274063

Z. Martinec, 2019. Classical Linear Elasticity. In: Principles of Continuum Mechanics. Nečas Center Series. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-05390-1_8. DOI: https://doi.org/10.1007/978-3-030-05390-1_8

D. Broek, 1982. The elastic crack-tip stress field. In: Elementary Engineering Fracture Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_3. DOI: https://doi.org/10.1007/978-94-009-4333-9_3

P. Patil, S.N. Khaderi, M. Ramji, 2018. Strain Intensity Factor and Interaction of Parallel Rigid Line Inclusion in Elastic Matrix Using FEA. In: Prakash, R., Jayaram, V., Saxena, A. (eds) Advances in Structural Integrity. Springer, Singapore. https://doi.org/10.1007/978-981-10-7197-3_27. DOI: https://doi.org/10.1007/978-981-10-7197-3_27

G. Mieczkowski. 2016. Stress Fields at the Tip of a Sharp Inclusion on the Interface of a Bimaterial. Springer Link, 52: 601–610. DOI: https://doi.org/10.1007/s11029-016-9610-3

G. Mieczkowski. 2015. Description of stress fields and displacements at the tip of a rigid, flat inclusion located at the interface using modified stress intensity factors. MECHANIKA, 21(2): 91–98. DOI: https://doi.org/10.5755/j01.mech.21.2.8726

A. Piccolroaz, D. Peck, M. Wrobel and G. Mishuris. 2021. Energy Release Rate, the crack closure integral and admissible singular fields in Fracture Mechanics. International Journal of Engineering Science, 164. . arXiv preprint arXiv:2103.17010. DOI: https://doi.org/10.1016/j.ijengsci.2021.103487

] F. Dal Corso and D. Bigoni, 2010. Growth of slip surfaces and line inclusions along shear bands in a softening material. International Journal of Fracture, 166: 225–237. DOI: https://doi.org/10.1007/978-94-007-0314-8_21

J. Mares Carreño, J.A.L. Ortega Herrera and G.S. Abarca Jiménez, 2021. A displacement potential function using complex variables for numerical computations of three-dimensional elasticity problems. Archives of Applied Mechanics, 91: 2331–2344. https://doi.org/10.1007/s00419-021-01885-6. DOI: https://doi.org/10.1007/s00419-021-01885-6

X.R. Wu and W. Xu, 2022. Weight Functions and Stress Intensity Factors for Complex Crack Geometries. In: Weight Function Methods in Fracture Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-16-8961-1_14. DOI: https://doi.org/10.1007/978-981-16-8961-1_14

S. Misra and N. Mandal, 2007. Mechanisms of deformation localization at the tips of shear fractures: Findings from analogue experiments and field evidence. Journal of Geophysical Research: Solid Earth, 112(B4): B04201.

Y. Wang, B. Wang, Y. Cui, et al. 2023. Anti-plane pull-out of a rigid line inclusion from an elastic medium. Applied Mathematics and Mechanics (English Edition), 44: 809–822. https://doi.org/10.1007/s10483-023-2980-6. DOI: https://doi.org/10.1007/s10483-023-2980-6

K. Miao, H. Hu, M. Dai, et al. 2023. Rigid inclusion in an elastic matrix revisited. Archives of Applied Mechanics, 93: 1189–1199. https://doi.org/10.1007/s00419-022-02322-y. DOI: https://doi.org/10.1007/s00419-022-02322-y

H.Müller, A. Touil, A. Schlüter,, et al. 2023. Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids. Archives of Applied Mechanics, 93: 933–946. https://doi.org/10.1007/s00419-022-02306-y. DOI: https://doi.org/10.1007/s00419-022-02306-y

C.H. Xu, Z.H. Zhou, X.S. Xu, et al. 2014. Fracture analysis of mode III crack problems for the piezoelectric bimorph. Archives of Applied Mechanics, 84: 1057–1079. https://doi.org/10.1007/s00419-014-0848-8. DOI: https://doi.org/10.1007/s00419-014-0848-8

A. Jafari, M.M Monfared and R. Bagheri, 2019. Mixed-mode computation of the transient dynamic stress intensity factor for multiple interface cracks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41: 573. https://doi.org/10.1007/s40430-019-2071-6. DOI: https://doi.org/10.1007/s40430-019-2071-6

H. Sönnerlind, 2015. Singularities in Finite Element Models: Dealing with Red Spots. COMSOL Multiphysics Blog. June 3, 2015.

G.B. Sinclair, J.R. Beisheim and A.A. Kardak, 2019. On the detection of stress singularities in finite element analysis. Journal of Applied Mechanics, 86(2): 021005. https://doi.org/10.1115/1.4042530. DOI: https://doi.org/10.1115/1.4041766

Y. Zhang, X. Ping, C. Wang, et al., 2021. A new computational approach for three-dimensional singular stress analysis of interface voids. Acta Mechanica, 232: 639–660. https://doi.org/10.1007/s00707-020-02842-0. DOI: https://doi.org/10.1007/s00707-020-02842-0

A. Piccolroaz, G. Mishuris, A.B. Movchan and N. Movchan, 2018. Perturbation analysis of Mode III interfacial cracks advancing in a dilute heterogeneous material. arXiv preprint arXiv:1105.3497.

A. Piccolroaz, G. Mishuris, A.B. Movchan and N. Movchan, 2018. Perturbation analysis of Mode III interfacial cracks advancing in a dilute heterogeneous material. arXiv preprint arXiv:1105.3497.

A. Piccolroaz, G. Mishuris, A.B. Movchan and N. Movchan, 2018. Perturbation analysis of Mode III interfacial cracks advancing in a dilute heterogeneous material. arXiv preprint arXiv:1105.3497.

] I.A. Ashcroft, A. Mubashar, 2017. Numerical approach: Finite element analysis. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_25-2. DOI: https://doi.org/10.1007/978-3-319-42087-5_25-2

M. Cooke, 2011. Numerical methods, boundary element. In: Gupta, H.K. (ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_152. DOI: https://doi.org/10.1007/978-90-481-8702-7_152

D.E. Beskos, 1987. Boundary element methods in dynamic analysis. Applied Mechanics Reviews, 40(1): 1–23. https://doi.org/10.1115/1.3149529. DOI: https://doi.org/10.1115/1.3149529

H. Okada, H. Rajiyah and S.N. Atluri, 1988. A novel displacement gradient boundary element method for elastic stress analysis with high accuracy. Journal of Applied Mechanics, 55(4): 786–794. https://doi.org/10.1115/1.3173723. DOI: https://doi.org/10.1115/1.3173723

B. C. Surve, B. Nemade, and V. Kaul, "Nano-electronic devices with machine learning capabilities," ICTACT Journal on Microelectronics, vol. 9, no. 3, pp. 1601-1606, Oct. 2023, doi: 10.21917/ijme.2023.0277.

G. Khandelwal, B. Nemade, N. Badhe, D. Mali, K. Gaikwad, and N. Ansari, "Designing and Developing novel methods for Enhancing the Accuracy of Water Quality Prediction for Aquaponic Farming," Advances in Nonlinear Variational Inequalities, vol. 27, no. 3, pp. 302-316, Aug. 2024, ISSN: 1092-910X.

B. Nemade, S. S. Alegavi, N. B. Badhe, and A. Desai, “Enhancing information security in multimedia streams through logic learning machine assisted moth-flame optimization,” ICTACT Journal of Communication Technology, vol. 14, no. 3, 2023.

S. S. Alegavi, B. Nemade, V. Bharadi, S. Gupta, V. Singh, and A. Belge, “Revolutionizing Healthcare through Health Monitoring Applications with Wearable Biomedical Devices,” International Journal of Recent Innovations and Trends in Computing and Communication, vol. 11, no. 9s, pp. 752–766, 2023. [Online]. Available: https://doi.org/10.17762/ijritcc.v11i9s.7890. DOI: https://doi.org/10.17762/ijritcc.v11i9s.7890

V. Kulkarni, B. Nemade, S. Patel, K. Patel, and S. Velpula, "A short report on ADHD detection using convolutional neural networks," Frontiers in Psychiatry, vol. 15, p. 1426155, Sept. 2024, doi: 10.3389/fpsyt.2024.1426155. DOI: https://doi.org/10.3389/fpsyt.2024.1426155

Downloads

Published

25-09-2024

Issue

Section

Research Articles

How to Cite

[1]
Charitidis J. Panagiotis, “Theoretical Review of Weight Functions for Rigid Line Inclusions: Implications for Stress Singularities and Crack Propagation”, Int J Sci Res Sci Eng Technol, vol. 11, no. 5, pp. 85–96, Sep. 2024, doi: 10.32628/IJSRSET2411589.

Similar Articles

1-10 of 69

You may also start an advanced similarity search for this article.