Synthesis, Photophysical, Solvatochromic and DFT Studies of Newer 1-(2-(naphthalen-2-yl)-2-oxoethyl) pyridin-1-ium bromide

Authors

  • Atul S. Patil Department of Chemistry, KVPS’s Kisan Arts, Commerce and Science College, Parola, Jalgaon, Maharashtra, India Author
  • Raosaheb S. Patil Department of Chemistry, Vasantrao Naik Arts, Science and Commerce College Dharni, Amravati. 444702, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRSET2411591

Keywords:

Pyridinium, Photophysical, Solvatochromic, Lippert-Mataga plot, DFT

Abstract

A newer pyridinium compound was synthesized under microwave irradiation by reaction of pyridine and 2-bromo-1-(naphthalen-2-yl)ethanone. The pyridinium compound was characterized by mass, IR, 1H NMR, 13C NMR spectral analysis, also photophysical, solvatochromic, and thermal properties of newer pyridinium compound were investigated. Solvent dependent optical properties of pyridinium compound with range of solvents with varying polaritieswere studied using Lippert-Mataga plot and solvent polarity empirical parameter ET(30). The thermal stability and phase behavior were studied by TGA and DSC analysis at a heating rate of 10 deg min-1. DFT computation was performed to get the optimized molecular orbitals and HOMO - LUMO energies.

Downloads

Download data is not yet available.

References

Patil, A. S., Patil, R. S., Patil, V. S., Mahulikar, P. P. (2022). Solvatochromic, Photophysical and DFT Studies of Newer 1-(2-oxo-2-(2-oxo-2H-chromen-3-yl) ethyl) pyridin-1-ium Bromide and 1-methyl-3-(2-oxo-2-(2-oxo-2H-chromen-3-yl) ethyl)-1H-imidazol-3-ium Bromide Synthesized under Microwave Irradiation. Current Physical Chemistry, 12(3), 233-242. DOI: https://doi.org/10.2174/1877946812666220908143126

Rogers R. D., Ionic liquids: industrial applications to green chemistry, In ACS symposium series, American Chemical Society, 2002. DOI: https://doi.org/10.1021/bk-2002-0818

Wei D., Ivaska A., Applications of ionic liquids in electrochemical sensors, Analytica.Chimica.Acta., 2008, 607, 126-135. DOI: https://doi.org/10.1016/j.aca.2007.12.011

Wasserscheid P., Welton T., Ionic liquids in synthesis, Willey, 2003. DOI: https://doi.org/10.1002/3527600701

Soriano A. N., Doma Jr, B. T., Li,M. H., Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J. Chem.Thermodyn., 2009, 41, 301-307. DOI: https://doi.org/10.1016/j.jct.2008.08.010

Koel M., Ionic liquids in chemical analysis, Crit. Rev. Anal. Chem., 2005, 35, 177-192. DOI: https://doi.org/10.1080/10408340500304016

Shamsipur M., Beigi A. A. M., Teymouri M., Pourmortazavi S. M., Irandoust M., Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, J. Mol. Liq., 2010 (157) 43-50. DOI: https://doi.org/10.1016/j.molliq.2010.08.005

Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999 (99) 2071−2083. DOI: https://doi.org/10.1021/cr980032t

Śliwa W., N-substituted salts of pyridine and related compounds, Monograph. Częstochowa, Poland: WSP, 1996.

Xiao H., Mei C., Ding N., Wei T., Zhang Y., Li B., Synthesis and photophysical properties of a novel pyridinium salt based on dipicolinate, J.Photochem.Photobiol. A: Chem., 2014 (273) 29-33. DOI: https://doi.org/10.1016/j.jphotochem.2013.09.005

Dehmlow E. V., Dehmlow S. S., Phase Transfer Catalysis, 2nd ed. Verlag Chemie, Weinheim, Germany,1983.

Scriven E. F., 4-Dialkylaminopyridines: super acylation and alkylation catalysts. Chem. Soc. Rev., 1983 (12) 129-161. DOI: https://doi.org/10.1039/cs9831200129

Madaan P., Tyagi V. K., Quaternary pyridinium salts: a review. J. oleo sci., 2008 (57) 197-215. DOI: https://doi.org/10.5650/jos.57.197

Lim C., Kim S. H., Yoh S. D., Fujio M., Tsuno Y., The Menschutkin reaction of 1-arylethyl bromides with pyridine: Evidence for the duality of clean SN1 and SN2 mechanisms, Tetrahedron lett., 1997 (38) 3243-3246. DOI: https://doi.org/10.1016/S0040-4039(97)00574-1

Kondo Y., Ogasa M., Kusabayashi S., Menschutkin reaction of triethylamine and of pyridine with methyl iodide. Activation enthalpy versus activation entropy correlations and extended Brönsted treatments in acetonitrile–methanol mixtures, J. Chem. Soc., Perkin Trans., 1984 (2) 2093-2097. DOI: https://doi.org/10.1039/P29840002093

Abramovitch R. A., Boodman N. S., Hawthorne J. O., Lyle R. E., Masciantonio P. X., Rodig O. R., Simon A. W., Singer G. M., Pyridine and its Derivatives, New York, NY, John Wiley & Sons, 1974.

Marek J., Stodulka P., Cabal J., Soukup O., Pohanka M., Korabecny J., Kuca K., Preparation of the pyridinium salts differing in the length of the N-alkyl substituent. Molecules, 2010 (15) 1967-1972. DOI: https://doi.org/10.3390/molecules15031967

I. Yamaguchi, H. Higashi, S. Shigesue, S. Shingai and M. Sato, Tetrahedron Lett., 2007, 48, 7778. DOI: https://doi.org/10.1016/j.tetlet.2007.09.009

Zhao S., Xu X., Zheng L., Liu H., An efficient ultrasonic-assisted synthesis of imidazolium and pyridinium salts based on the Zincke reaction, Ultrasonsonochem., 2010 (17) 685-689. DOI: https://doi.org/10.1016/j.ultsonch.2009.12.019

Pernak J., Rogoża J., Mirska I., Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides, Eur. J. Med. Chem.,2001 (36) 313–320. DOI: https://doi.org/10.1016/S0223-5234(01)01226-0

[N. Papaiconomou et al. / Electrochimica Acta 70 (2012) 124– 130].

Bittner B., Wrobel R. J., Milchert E., Physical properties of pyridinium ionic liquids, J. Chem. Thermodynamics,2012 (55) 159–165. DOI: https://doi.org/10.1016/j.jct.2012.06.018

Aggarwal K., Khurana J. M., Effect of hydroxyl group on the photophysical properties of benzo [a] xanthenes–solvatochromic studies and estimation of dipole moment,J. Photochem. Photobiol. A,2014, 276,71-82. DOI: https://doi.org/10.1016/j.jphotochem.2013.11.014

Kumar, D., Thomas, K. J., Optical properties of pyrene and anthracene containing imidazoles: experimental and theoretical investigations,J. Photochem. Photobiol. A, 2011,218, 162-173. DOI: https://doi.org/10.1016/j.jphotochem.2010.12.018

B. Valeur, Molecular Fluorescence: Principles and Applications, WILEY-VCHVerlag GmbH, Weinheim, 2002. DOI: https://doi.org/10.1002/3527600248

Zhang Q., Luo L., Xu H., HuZ., Brommesson C., Wu J., Uvdal K., Design, synthesis, linear and nonlinear photophysical properties of novel pyrimidine-based imidazole derivatives,New J. Chem., 2016,40, 3456-3463. DOI: https://doi.org/10.1039/C5NJ02874D

Patil R. S., Patil A. S., Patil V. S., Jirimali H. D., Mahulikar P. P., Synthesis, photophysical, solvatochromic and DFT studies of (Z)-2-(2-Phenyl-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ylidene)acetonitrile Derivatives, J. Lumin.,2019,210, 303–310. DOI: https://doi.org/10.1016/j.jlumin.2019.02.026

Patil R. S., Patil A. S., Patil V. S., Mahulikar P. P., Base promoted synthesis of 2-((5-methoxynaphthalen-1-yl)methyl)-3-methyl-5-sec-amino-[1,1-biphenyl]-4-carbonitrile derivatives: Photophysical, Solvatochromic and DFT studies, J. Mol. Struct., 2021, 1226, 129339. DOI: https://doi.org/10.1016/j.molstruc.2020.129339

Downloads

Published

28-03-2024

Issue

Section

Research Articles

How to Cite

[1]
Atul S. Patil and Raosaheb S. Patil, “Synthesis, Photophysical, Solvatochromic and DFT Studies of Newer 1-(2-(naphthalen-2-yl)-2-oxoethyl) pyridin-1-ium bromide”, Int J Sci Res Sci Eng Technol, vol. 11, no. 2, pp. 544–551, Mar. 2024, doi: 10.32628/IJSRSET2411591.