Synthesis, Photophysical, Solvatochromic and DFT Studies of Newer 1-(2-(naphthalen-2-yl)-2-oxoethyl) pyridin-1-ium bromide
DOI:
https://doi.org/10.32628/IJSRSET2411591Keywords:
Pyridinium, Photophysical, Solvatochromic, Lippert-Mataga plot, DFTAbstract
A newer pyridinium compound was synthesized under microwave irradiation by reaction of pyridine and 2-bromo-1-(naphthalen-2-yl)ethanone. The pyridinium compound was characterized by mass, IR, 1H NMR, 13C NMR spectral analysis, also photophysical, solvatochromic, and thermal properties of newer pyridinium compound were investigated. Solvent dependent optical properties of pyridinium compound with range of solvents with varying polaritieswere studied using Lippert-Mataga plot and solvent polarity empirical parameter ET(30). The thermal stability and phase behavior were studied by TGA and DSC analysis at a heating rate of 10 deg min-1. DFT computation was performed to get the optimized molecular orbitals and HOMO - LUMO energies.
Downloads
References
Patil, A. S., Patil, R. S., Patil, V. S., Mahulikar, P. P. (2022). Solvatochromic, Photophysical and DFT Studies of Newer 1-(2-oxo-2-(2-oxo-2H-chromen-3-yl) ethyl) pyridin-1-ium Bromide and 1-methyl-3-(2-oxo-2-(2-oxo-2H-chromen-3-yl) ethyl)-1H-imidazol-3-ium Bromide Synthesized under Microwave Irradiation. Current Physical Chemistry, 12(3), 233-242. DOI: https://doi.org/10.2174/1877946812666220908143126
Rogers R. D., Ionic liquids: industrial applications to green chemistry, In ACS symposium series, American Chemical Society, 2002. DOI: https://doi.org/10.1021/bk-2002-0818
Wei D., Ivaska A., Applications of ionic liquids in electrochemical sensors, Analytica.Chimica.Acta., 2008, 607, 126-135. DOI: https://doi.org/10.1016/j.aca.2007.12.011
Wasserscheid P., Welton T., Ionic liquids in synthesis, Willey, 2003. DOI: https://doi.org/10.1002/3527600701
Soriano A. N., Doma Jr, B. T., Li,M. H., Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J. Chem.Thermodyn., 2009, 41, 301-307. DOI: https://doi.org/10.1016/j.jct.2008.08.010
Koel M., Ionic liquids in chemical analysis, Crit. Rev. Anal. Chem., 2005, 35, 177-192. DOI: https://doi.org/10.1080/10408340500304016
Shamsipur M., Beigi A. A. M., Teymouri M., Pourmortazavi S. M., Irandoust M., Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, J. Mol. Liq., 2010 (157) 43-50. DOI: https://doi.org/10.1016/j.molliq.2010.08.005
Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999 (99) 2071−2083. DOI: https://doi.org/10.1021/cr980032t
Śliwa W., N-substituted salts of pyridine and related compounds, Monograph. Częstochowa, Poland: WSP, 1996.
Xiao H., Mei C., Ding N., Wei T., Zhang Y., Li B., Synthesis and photophysical properties of a novel pyridinium salt based on dipicolinate, J.Photochem.Photobiol. A: Chem., 2014 (273) 29-33. DOI: https://doi.org/10.1016/j.jphotochem.2013.09.005
Dehmlow E. V., Dehmlow S. S., Phase Transfer Catalysis, 2nd ed. Verlag Chemie, Weinheim, Germany,1983.
Scriven E. F., 4-Dialkylaminopyridines: super acylation and alkylation catalysts. Chem. Soc. Rev., 1983 (12) 129-161. DOI: https://doi.org/10.1039/cs9831200129
Madaan P., Tyagi V. K., Quaternary pyridinium salts: a review. J. oleo sci., 2008 (57) 197-215. DOI: https://doi.org/10.5650/jos.57.197
Lim C., Kim S. H., Yoh S. D., Fujio M., Tsuno Y., The Menschutkin reaction of 1-arylethyl bromides with pyridine: Evidence for the duality of clean SN1 and SN2 mechanisms, Tetrahedron lett., 1997 (38) 3243-3246. DOI: https://doi.org/10.1016/S0040-4039(97)00574-1
Kondo Y., Ogasa M., Kusabayashi S., Menschutkin reaction of triethylamine and of pyridine with methyl iodide. Activation enthalpy versus activation entropy correlations and extended Brönsted treatments in acetonitrile–methanol mixtures, J. Chem. Soc., Perkin Trans., 1984 (2) 2093-2097. DOI: https://doi.org/10.1039/P29840002093
Abramovitch R. A., Boodman N. S., Hawthorne J. O., Lyle R. E., Masciantonio P. X., Rodig O. R., Simon A. W., Singer G. M., Pyridine and its Derivatives, New York, NY, John Wiley & Sons, 1974.
Marek J., Stodulka P., Cabal J., Soukup O., Pohanka M., Korabecny J., Kuca K., Preparation of the pyridinium salts differing in the length of the N-alkyl substituent. Molecules, 2010 (15) 1967-1972. DOI: https://doi.org/10.3390/molecules15031967
I. Yamaguchi, H. Higashi, S. Shigesue, S. Shingai and M. Sato, Tetrahedron Lett., 2007, 48, 7778. DOI: https://doi.org/10.1016/j.tetlet.2007.09.009
Zhao S., Xu X., Zheng L., Liu H., An efficient ultrasonic-assisted synthesis of imidazolium and pyridinium salts based on the Zincke reaction, Ultrasonsonochem., 2010 (17) 685-689. DOI: https://doi.org/10.1016/j.ultsonch.2009.12.019
Pernak J., Rogoża J., Mirska I., Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides, Eur. J. Med. Chem.,2001 (36) 313–320. DOI: https://doi.org/10.1016/S0223-5234(01)01226-0
[N. Papaiconomou et al. / Electrochimica Acta 70 (2012) 124– 130].
Bittner B., Wrobel R. J., Milchert E., Physical properties of pyridinium ionic liquids, J. Chem. Thermodynamics,2012 (55) 159–165. DOI: https://doi.org/10.1016/j.jct.2012.06.018
Aggarwal K., Khurana J. M., Effect of hydroxyl group on the photophysical properties of benzo [a] xanthenes–solvatochromic studies and estimation of dipole moment,J. Photochem. Photobiol. A,2014, 276,71-82. DOI: https://doi.org/10.1016/j.jphotochem.2013.11.014
Kumar, D., Thomas, K. J., Optical properties of pyrene and anthracene containing imidazoles: experimental and theoretical investigations,J. Photochem. Photobiol. A, 2011,218, 162-173. DOI: https://doi.org/10.1016/j.jphotochem.2010.12.018
B. Valeur, Molecular Fluorescence: Principles and Applications, WILEY-VCHVerlag GmbH, Weinheim, 2002. DOI: https://doi.org/10.1002/3527600248
Zhang Q., Luo L., Xu H., HuZ., Brommesson C., Wu J., Uvdal K., Design, synthesis, linear and nonlinear photophysical properties of novel pyrimidine-based imidazole derivatives,New J. Chem., 2016,40, 3456-3463. DOI: https://doi.org/10.1039/C5NJ02874D
Patil R. S., Patil A. S., Patil V. S., Jirimali H. D., Mahulikar P. P., Synthesis, photophysical, solvatochromic and DFT studies of (Z)-2-(2-Phenyl-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ylidene)acetonitrile Derivatives, J. Lumin.,2019,210, 303–310. DOI: https://doi.org/10.1016/j.jlumin.2019.02.026
Patil R. S., Patil A. S., Patil V. S., Mahulikar P. P., Base promoted synthesis of 2-((5-methoxynaphthalen-1-yl)methyl)-3-methyl-5-sec-amino-[1,1-biphenyl]-4-carbonitrile derivatives: Photophysical, Solvatochromic and DFT studies, J. Mol. Struct., 2021, 1226, 129339. DOI: https://doi.org/10.1016/j.molstruc.2020.129339
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.