Modelling of EM Wave Propagation in Distorted Conventional Optical Fiber to Multilayer Hollow Bragg Fiber

Authors

  • Narendra Bihari University Department of Physics, Lalit Narayan Mithila University, Darbhanga-846004, Bihar, India Author
  • Ritesh Kumar Chourasia Department of Physics, Samastipur College, Samastipur-848134 (A Constituent Unit of L.N.M.U. Darbhanga-846004), Bihar, India Author

DOI:

https://doi.org/10.32628/IJSRSET24116171

Keywords:

Distorted Optical Fiber, Distorted Bragg Fiber, Theoretical Modeling, Mathematical Modeling, Hankel Functions

Abstract

Present investigation deals with the electromagnetic (EM) wave propagation through the asymmetrical (distorted) conventional optical fiber and extended the investigation for the distorted multilayered hollow Bragg Fiber. For this purposed theoretical and mathematical are well connected to investigate and further discuss the wave propagation through such distorted structure so that further many useful parameters like optical power, different losses, dispersion analysis, etc. can be computed easily by the researchers in the same area. In present study, the dispersion properties of an optical fiber with a little one-sided flattening are modelled using a straightforward mathematical approach that relies on coordinate transformation. In order to derive the modal eigenvalue equation, we provide the boundary condition under a weak guiding condition and choose new orthogonal coordinates that are suitable for the suggested waveguide construction. Further, a distorted Bragg fiber with a little flattened distortion is anticipated to have dispersion characteristics by comparing the fields at different boundaries.

Downloads

Download data is not yet available.

References

E. Snitzer, Cylindrical dielectric waveguide modes, J. Opt. Soc. Amer. 51, 491-498, (1961). DOI: https://doi.org/10.1364/JOSA.51.000491

A. W. Synder and W. R. Young, Modes of optical waveguides, J. Opt. Soc. Amer. 68, 297-309, (1978). DOI: https://doi.org/10.1364/JOSA.68.000297

C. Yeh, Elliptical dielectric waveguide, J. Appl. Phys. 33, 3235-3242 (1962). DOI: https://doi.org/10.1063/1.1931144

C. Yeh, Modes in weakly guiding elliptical optical fibers, Opt. Quantum Electron 8, 43-47 (1976). DOI: https://doi.org/10.1007/BF00620439

K. M. Ho., C. T. Chan, C. M. Soukoulis, Existence of a photonic bandgap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152-3155, (1990). DOI: https://doi.org/10.1103/PhysRevLett.65.3152

P. Yeh, A. Yariv, E. Maron, Theory of the Bragg fibers, J. Opt. Soc. Am. 68, 1196-1201, (1978). DOI: https://doi.org/10.1364/JOSA.68.001196

G. Vienne, first demonstration of air-silica Bragg Fibers, OSA Trends Opt. Photon. Ser. 95 B, 715-717 (2004).

R. K. Chourasia, N. K. Chourasia, N. Bihari, Optical Properties of Hollow-Core Bragg Fiber Waveguides, Photonic Materials: Recent Advances and Emerging Applications. Singapore: Bentham Science Publishers, 214, 2023. DOI: https://doi.org/10.2174/9789815049756123010014

N. K. Chourasia, A. Srivastava, V. Kumar, R. K. Chourasia, optimizing temperature-dependent molar volume fraction of biodiesel fuel in a pseudo-binary mixture through Bragg fiber waveguide sensor having defect layer, Fuel, Volume 293, 2021,120489, https://doi.org/10.1016/j.fuel.2021.120489. DOI: https://doi.org/10.1016/j.fuel.2021.120489

N. K. Chourasia, N. Bihari, R. K. Chourasia, An optofluidic Bragg fiber sensor for estimating adulterants in a temperature-dependent molar fraction of hydrated mono-alcohol fuels, 8(9), e10532, 2022, https://doi.org/10.1016/j.heliyon.2022.e10532. DOI: https://doi.org/10.1016/j.heliyon.2022.e10532

R. K. Chourasia, N. K. Chourasia, A. Srivastava, N. Bihari, Photonic Nanostructured Bragg Fuel Adulteration Sensor, Photonic Materials: Recent Advances and Emerging Applications. Singapore: Bentham Science Publishers, 237, 2023. DOI: https://doi.org/10.2174/9789815049756123010015

N. Bihari et al., H-Polarised EM-Wave Transport in Polymeric-Chalcogenide Columnar Photonic Materials, 2023 J. Phys.: Conf. Ser. 2426 012009, https://doi.org/10.1088/1742-6596/2426/1/012009. DOI: https://doi.org/10.1088/1742-6596/2426/1/012009

N. Bihari, N. K. Chourasia, R. K. Chourasia, Exploring optical properties in cylindrical polymeric-chalcogenides photonic materials, Materials Today: Proceedings, Volume 67, Part 5, 2022, Pages 625-631, https://doi.org/10.1016/j.matpr.2022.06.093. DOI: https://doi.org/10.1016/j.matpr.2022.06.093

N. K. Chourasia, A. Srivastava, V. Kumar, R. K. Chourasia, Doubly electrically tuned cylindrical Bragg fiber waveguide inline optical filter for multiwavelength LASER applications, Materials Today Communications, Volume 25, 2020, 101620, https://doi.org/10.1016/j.mtcomm.2020.101620. DOI: https://doi.org/10.1016/j.mtcomm.2020.101620

J. I. Sakai, P. Nouchi, Propagation properties of Bragg fiber analyzed by a Hankel function formalism, Opt. Commun. 249, 153-163, (2005). DOI: https://doi.org/10.1016/j.optcom.2005.01.006

Downloads

Published

30-11-2024

Issue

Section

Research Articles

How to Cite

[1]
Narendra Bihari and Ritesh Kumar Chourasia, “Modelling of EM Wave Propagation in Distorted Conventional Optical Fiber to Multilayer Hollow Bragg Fiber”, Int J Sci Res Sci Eng Technol, vol. 11, no. 6, pp. 163–168, Nov. 2024, doi: 10.32628/IJSRSET24116171.

Similar Articles

1-10 of 29

You may also start an advanced similarity search for this article.