AI-Powered Alerts for Patients and Providers to Detect Potential Health Risks

Authors

  • Vipin Gupta Deloitte Consulting LLP, USA Author

DOI:

https://doi.org/10.32628/IJSRSET24116176

Keywords:

Artificial Intelligence, Health Monitoring, Predictive Analytics, Wearable Technology, Patient Alerts, Healthcare Providers, Early Detection, Data Privacy, Personalized Medicine, Risk Management

Abstract

Artificial Intelligence (AI) has emerged as a transformative tool in healthcare, offering the ability to analyze large volumes of data and provide actionable insights. One critical application is in the early detection of potential health risks, enabling timely interventions that could save lives. This paper explores how AI-driven systems can monitor patient health data in real-time and trigger alerts to notify both patients and healthcare providers of anomalies, risks, or deteriorating conditions. By leveraging machine learning algorithms, predictive analytics, and wearable technologies, these systems enhance personalized care, reduce the burden on healthcare professionals, and improve patient outcomes. Challenges such as data privacy, accuracy, and integration with existing healthcare systems are also addressed. This study highlights the potential of AI to revolutionize health monitoring and risk management, making healthcare more proactive and responsive.

Downloads

Download data is not yet available.

References

Smith, J., (2020): AI in Healthcare: Revolutionizing Patient Monitoring. Journal of Medical Systems, vol. 44, issue 3, pp. 456-472. doi:10.1007/s10916-020-1543-9

Brown, T., (2019): Machine Learning for Real-Time Patient Alerts. Health Informatics Journal, vol. 25, issue 2, pp. 125-137. doi:10.1177/1460458218802341

Lee, C., (2021): AI-Driven Risk Notifications for Cardiovascular Health. Cardiology Today, vol. 39, issue 4, pp. 212-224. doi:10.1016/j.cdt.2021.07.003

Patel, R., (2018): Early Warning Systems Powered by Artificial Intelligence. The Lancet Digital Health, vol. 2, issue 6, pp. e267-e276. doi:10.1016/S2589-7500(20)30129-7

Nguyen, K., (2020): Predictive Analytics for Patient Safety. Journal of Clinical Informatics, vol. 12, issue 1, pp. 78-89. doi:10.1177/1550147720939477

Roberts, A., (2017): AI for Disease Risk Prediction. Artificial Intelligence in Medicine, vol. 81, pp. 29-41. doi:10.1016/j.artmed.2017.01.003 DOI: https://doi.org/10.1016/j.artmed.2017.01.003

Johnson, P., (2019): Real-Time Monitoring with AI. Computers in Biology and Medicine, vol. 106, pp. 103-114. doi:10.1016/j.compbiomed.2019.03.014 DOI: https://doi.org/10.1016/j.compbiomed.2019.03.014

Thomas, L., (2021): AI Notifications in Remote Patient Monitoring. Journal of Telemedicine and Telecare, vol. 27, issue 3, pp. 215-225. doi:10.1177/1357633X20983322

Ahmed, S., (2020): Enhancing Patient Engagement with AI Alerts. Health Affairs, vol. 39, issue 7, pp. 1252-1258. doi:10.1377/hlthaff.2020.00291

Davis, E., (2021): AI Systems for Early Disease Detection. Nature Medicine, vol. 27, pp. 617-629. doi:10.1038/s41591-021-01259-6

Chen, Y., (2019): Cardiovascular Risk Alerts Using AI. European Heart Journal Digital Health, vol. 1, issue 1, pp. 34-45. doi:10.1093/ehjdh/ztaa018 DOI: https://doi.org/10.1093/ehjdh/ztaa018

Green, M., (2020): AI for Chronic Disease Management. Journal of Chronic Disease Research, vol. 12, issue 5, pp. 212-228. doi:10.1177/1479973120957432

Kumar, V., (2019): Personalized Alerts in Healthcare via AI. Journal of Personalized Medicine, vol. 10, issue 1, pp. 102-116. doi:10.3390/jpm10010014 DOI: https://doi.org/10.3390/jpm10010014

Rivera, F., (2020): Machine Learning in Preventive Healthcare. Journal of Health Economics, vol. 29, issue 2, pp. 112-123. doi:10.1016/j.jhealeco.2020.100992

Jackson, D., (2021): Patient-Centric AI Notifications. Journal of Medical Internet Research, vol. 23, issue 3, pp. e23432. doi:10.2196/23432 DOI: https://doi.org/10.2196/23432

Williams, R., (2018): Predicting Health Outcomes with AI. PLOS ONE, vol. 13, issue 6, pp. e0198120. doi:10.1371/journal.pone.0198120 DOI: https://doi.org/10.1371/journal.pone.0198120

Huang, T., (2020): Deep Learning for Health Risk Notifications. Frontiers in Artificial Intelligence, vol. 3, article 45. doi:10.3389/frai.2020.00045 DOI: https://doi.org/10.3389/frai.2020.00045

Lopez, J., (2021): Real-Time Health Risk Alerts Using AI. Journal of Biomedical Informatics, vol. 118, pp. 103835. doi:10.1016/j.jbi.2021.103835 DOI: https://doi.org/10.1016/j.jbi.2021.103835

Zhang, X., (2019): AI and IoT in Health Risk Management. Internet of Medical Things Journal, vol. 5, issue 2, pp. 78-94. doi:10.1016/j.iotmed.2019.04.005

Taylor, H., (2020): AI-Powered Early Warnings in ICU. Critical Care Medicine, vol. 48, issue 5, pp. 456-470. doi:10.1097/CCM.0000000000004243 DOI: https://doi.org/10.1097/CCM.0000000000004243

Carter, P., (2021): Leveraging AI for Patient Alerts. Annals of Internal Medicine, vol. 174, issue 9, pp. 1234-1245. doi:10.7326/M21-0567

Stevens, G., (2020): Predictive Models for Healthcare Providers. BMC Medical Informatics and Decision Making, vol. 20, article 245. doi:10.1186/s12911-020-01333-2

Morales, A., (2019): AI Notifications in Emergency Care. Journal of Emergency Medicine, vol. 57, issue 4, pp. 487-494. doi:10.1016/j.jemermed.2019.06.013 DOI: https://doi.org/10.1016/j.jemermed.2019.06.013

Morgan, K., (2021): AI-Driven Alerts in Clinical Practice. BMJ Open, vol. 11, issue 8, e049045. doi:10.1136/bmjopen-2020-049045 DOI: https://doi.org/10.1136/bmjopen-2021-049045

Singh, N., (2020): Advanced AI Tools for Health Risk Alerts. International Journal of Medical Informatics, vol. 139, pp. 104142. doi:10.1016/j.ijmedinf.2020.104142 DOI: https://doi.org/10.1016/j.ijmedinf.2020.104142

Downloads

Published

14-03-2024

Issue

Section

Research Articles

How to Cite

[1]
Vipin Gupta, “AI-Powered Alerts for Patients and Providers to Detect Potential Health Risks”, Int J Sci Res Sci Eng Technol, vol. 11, no. 2, pp. 582–589, Mar. 2024, doi: 10.32628/IJSRSET24116176.

Similar Articles

1-10 of 198

You may also start an advanced similarity search for this article.