Automatic Classification of Olive Leaves Disease Based on Adaptive Neuro-Fuzzy Inference System with Hybrid Features
DOI:
https://doi.org/10.32628/IJSRSET2512160Keywords:
Classification, Clustering, Hybrid features, Olive, Leaves diseasesAbstract
Modern economies in many nations owe a great deal to the production of crops. Foliar diseases may cause immense damage to many different types of crops. These crops include wheat, olive, fruit, and many more. New AI breakthroughs require more precise identification of olive leaf diseases. An adaptive neuro-fuzzy inference system (ANFIS) is suggested based on mixed features to determine whether olive leaves are healthy or infected. Images of olive leaves are processed in various ways to enhance them, such as increasing contrast and filtering to remove unwanted noise. Olive leaf segmentation is performed using the k-means method. Several methods are combined to create hybrid features, including statistical moment invariants, a feature histogram, and a grey-level co-occurrence matrix (GLCM). The obtained characteristics are analyzed in this study to measure their potential discriminative ability between healthy and diseased olive leaves. In conclusion, the proposed approach provides a more accurate and efficient result for categorization. The suggested model achieves a remarkable 98.5% accuracy in its predictions.7
Downloads
References
S. K. Jarallah, and S. A. Mahmood, “Query-Based Video Summarization System Based on Light Weight Deep Learning Model”, International Journal of Intelligent Engineering and Systems, Vol. 15, No. 6, pp. 247–262, 2022, doi:10.22266/ijies2022.1231.24. DOI: https://doi.org/10.22266/ijies2022.1231.24
A. M. Jalil, F. S. Hasan, and H. A. Alabbasi, “Speaker Identification Using Convolutional Neural Network for Clean and Noisy Speech Samples”, In: Proc. of First International Conference of Computer and Applied Sciences (CAS), Baghdad, Iraq, pp. 57-62, 2019, doi:10.1109/CAS47993.2019.9075461. DOI: https://doi.org/10.1109/CAS47993.2019.9075461
A. S. Mahdi and S. A. Mahmood, “An Edge Computing Environment for Early Wildfire Detection”, Annals of Emerging Technologies in Computing (AETiC), Vol. 6, No. 3, pp. 56-68, 2022, doi:10.33166/AETiC.2022.03.005. DOI: https://doi.org/10.33166/AETiC.2022.03.005
A. S. Mahdi, and S. A. Mahmood, “Wildfire Detection System using Yolov5 Deep Learning Model”, International Journal of Computing and Digital Systems, Vol. 14, No. 1, pp. 10149-10158, 2023, doi:10.12785/ijcds/140188. DOI: https://doi.org/10.12785/ijcds/140188
H. K. Hoomod and Z. S. Amory, “Temperature Prediction Using Recurrent Neural Network for Internet of Things Room Controlling Application”, In: Proc. of the 2020 5th International Conf. on Communication and Electronics Systems (ICCES), Coimbatore, India, pp. 973-978, 2020, doi:10.1109/ICCES48766.2020.9137885. DOI: https://doi.org/10.1109/ICCES48766.2020.9137885
O. A. Alawi, H. M. Kamar, S. Q. Salih, S. I. Abba, W. Ahmed, R. Z. Homod, … Z. M. Yaseen, “Development of optimized machine learning models for predicting flat plate solar collectors thermal efficiency associated with Al2O3-water nanofluids”, Engineering Applications of Artificial Intelligence, Vol. 133, Part B, No. 108158, 2024, doi:10.1016/j.engappai.2024.108158. DOI: https://doi.org/10.1016/j.engappai.2024.108158
Z. H. Ali, H. M. Salman, and A. H. Harif, “SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines”, Iraqi Journal of science, Vol. 64, No. 10, pp. 5442-5451, 2023, doi: 10.24996/ijs.2023.64.10.45. DOI: https://doi.org/10.24996/ijs.2023.64.10.45
S. A. Mahmood, A. M. Abid, and W. A. K. Naser, “Contextual Anomaly Detection Based Video Surveillance System”, In: Proc. of 2021 11th IEEE International Conf. on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, pp.120-125, 2021, doi:10.1109/ICCSCE52189.2021.9530859. DOI: https://doi.org/10.1109/ICCSCE52189.2021.9530859
M. H. Abdalla, J. Majidpour, R. A. Rasul, A. A. Alsewari, T. A. Rashid, A. M. Ahmed, …, S. Q. Salih, “Sentiment Analysis Based on Hybrid Neural Network Techniques Using Binary Coordinate Ascent Algorithm”, in IEEE Access, Vol. 11, No. 108158, pp. 134087 - 134099, 2023, doi: 10.1109/ACCESS.2023.3334980. DOI: https://doi.org/10.1109/ACCESS.2023.3334980
S. H. Jasim, R. A. Haleot, and S. A. Thajeel, “Brain Stroke Segmentation Based on U-NET Algorithm”, In: Proc. of the 2022 International Conf. on Data Science and Intelligent Computing (ICDSIC), pp. 208-211, 2022, doi:10.1109/ICDSIC56987.2022.10076085. DOI: https://doi.org/10.1109/ICDSIC56987.2022.10076085
M. S. Jabber, “Documents Image Classification and Retrieval Based on Logo Recognition”, Iraqi Journal of Information Technology, Vol. 8, No. 1, pp. 59-73, 2017. DOI: https://doi.org/10.34279/0923-008-001-010
S. A. Patel and P. A. Barot, “Parallel Custom Deep Learning Model for Classification of Plant Leaf Disease Using Fusion of Features”, International Journal of Intelligent Engineering and Systems, Vol. 17, No. 2, pp. 50–60, 2024, doi:10.22266/ijies2024.0430.05. DOI: https://doi.org/10.22266/ijies2024.0430.05
M. Tiwari, H. Kumar, N. Prakash, S. Kumar, R. Neware, S. Tripathi, and R. Agarwal, “Tomato Disease Detection Using Vision Transformer with Residual L1-Norm Attention and Deep Neural Networks”, International Journal of Intelligent Engineering and Systems, Vol. 17, No. 1, pp. 679–688, 2024, doi:10.22266/ijies2024.0229.57. DOI: https://doi.org/10.22266/ijies2024.0229.57
H. Darmawan, M. Yuliana, and M. Z. S. Hadi, “Cloud-based Paddy Plant Pest and Disease Identification using Enhanced Deep Metric Learning and k-NN Classification with Augmented Latent Fusion”, International Journal of Intelligent Engineering and Systems, Vol. 16, No. 6, pp. 158–170, 2023, doi:10.22266/ijies2023.1231.14. DOI: https://doi.org/10.22266/ijies2023.1231.14
A. Ksibi, M. Ayadi, B. O. Soufiene, M. M. Jamjoom, and Z. Ullah, “MobiRes-Net: A Hybrid Deep Learning Model for Detecting and Classifying Olive Leaf Diseases”, Applied Sciences, Vol. 12, No. 20, p. 1-19, 2022, doi:10.3390/app122010278. DOI: https://doi.org/10.3390/app122010278
I. Navrozidis, T. Alexandridis, D. Moshou, A. Haugommard, and A. Lagopodi, “Implementing Sentinel-2 Data and Machine Learning to Detect Plant Stress in Olive Groves”, Remote Sensing, Vol. 14, No. 23, p. 1-22, 2022, doi:10.3390/rs14235947. DOI: https://doi.org/10.3390/rs14235947
A. Sanaeifar, C. Yang, M. de la Guardia, W. Zhang, X. Li, and Y. He, “Proximal hyperspectral sensing of abiotic stresses in plants”, Science of The Total Environment, Vol. 861, No. 160652, 2023, doi:10.1016/j.scitotenv.2022.160652. DOI: https://doi.org/10.1016/j.scitotenv.2022.160652
S. Uğuz, and N. Uysal, “Classification of Olive Leaf Diseases Using Deep Convolutional Neural Networks”, Neural Computing and Applications, Vol. 33, No. 5, pp. 4133–4149, 2021, doi:10.1007/s00521-020-05235-5. DOI: https://doi.org/10.1007/s00521-020-05235-5
H. Alshammari, K. Gasmi, M. Krichen, L. B. Ammar, M.O. Abdelhadi, A. Boukrara, and M. A. Mahmood, “Optimal Deep Learning Model for Olive Disease Diagnosis Based on An Adaptive Genetic Algorithm”, Wireless Communications and Mobile Computing, Vol. 2022, pp.1- 13, 2022, doi:10.1155/2022/8531213. DOI: https://doi.org/10.1155/2022/8531213
V. Meshram, K. Patil, V. Meshram, D. Hanchate, and S. D. Ramkteke,“Machine learning in agriculture domain: A state-of-art survey”, Artificial Intelligence in the Life Sciences, Vol. 1, p. 1-11, 2021, doi:10.1016/j.ailsci.2021.100010. DOI: https://doi.org/10.1016/j.ailsci.2021.100010
H. Alshammari, K. Gasmi, I. B. Ltaifa, M. Krichen, L. B. Ammar, and M. A. Mahmood, “Olive Disease Classification Based on Vision Transformer and CNN Models”, Computational Intelligence and Neuroscience, Vol. 2022, pp.1-10, 2022, doi:10.1155/2022/3998193. DOI: https://doi.org/10.1155/2022/3998193
A. Abbas, and S. Deny, “Progress and limitations of deep networks to recognize objects in unusual poses”, In: Proc. of The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23), pp. 160–168, 2022, doi: 10.48550/arXiv.2207.08034. DOI: https://doi.org/10.1609/aaai.v37i1.25087
E. Raouhi, M. Lachgar, H. Hrimech, and A. Kartit, “Optimization Techniques in Deep Convolutional Neuronal Networks Applied to Olive Diseases Classification”, Artificial Intelligence in Agriculture, Vol. 6, pp. 77-89, 2022, doi:10.1016/j.aiia.2022.06.001. DOI: https://doi.org/10.1016/j.aiia.2022.06.001
A. Sinha, and R. S. Shekhawat, “Olive Spot Disease Detection and Classification Using Analysis of Leaf Image Textures”, Procedia Computer Science, Vol. 167, pp. 2328–2336, 2020, doi:10.1016/j.procs.2020.03.285. DOI: https://doi.org/10.1016/j.procs.2020.03.285
M. Anand and M. Sundaram, “Channel and Spatial Attention Aware UNet Architecture for Segmentation of Blood Vessels, Exudates and Microaneurysms in Diabetic Retinopathy”, International Journal of Intelligent Engineering and Systems, Vol. 17, No. 2, pp. 1–16, 2024, doi: 10.22266/ijies2024.0430.01. DOI: https://doi.org/10.22266/ijies2024.0430.01
G. Bompem, D. Pandluri, “Batch Normalization Based Convolutional Neural Network for Segmentation and Classification of Brain Tumor MRI Images”, International Journal of Intelligent Engineering and Systems, Vol. 17, No. 2, pp. 39–49, 2024, doi: 10.22266/ijies2024.0430.04. DOI: https://doi.org/10.22266/ijies2024.0430.04
M. Waleed, T.W. Um, A. Khan, and U. Khan, “Automatic Detection System of Olive Trees using Improved K-Means Algorithm”, Remote Sensing, Vol. 12, No. 5:760, pp. 1–16, 2020, doi:10.3390/rs12050760. DOI: https://doi.org/10.3390/rs12050760
K. Shao, G. Mei, and Y. Wu, “Investigating Changes in Global Distribution of Ozone in 2018 Using K-Means Clustering Algorithm”, Journal of Computational Mathematics and Data Science, Vol. 3, pp.1-14, 2022, doi:10.1016/j.jcmds.2022.100028. DOI: https://doi.org/10.1016/j.jcmds.2022.100028
A. Yousuf and U. Khan, “Ensemble Classifier for Plant Disease Detection”, International Journal of Computer Science and Mobile Computing, Vol. 10, No.1, pp. 14-22, 2021, doi:10.47760/ijcsmc.2021.v10i01.003. DOI: https://doi.org/10.47760/ijcsmc.2021.v10i01.003
Z. Wu, S. Jiang, X. Zhou, Y. Wang, Y. Zuo, Z. Wu, … Q. Liu,” Application of Image Retrieval Based on Convolutional Neural Networks and Hu Invariant Moment Algorithm in Computer Telecommunications,” Computer Communications, Vol. 150, pp.729–738, 2020, doi:10.1016/j.comcom.2019.11.053. DOI: https://doi.org/10.1016/j.comcom.2019.11.053
R. Hidayat, A. Harjoko, and A. Musdholifah, “A Robust Image Retrieval Method Using Multi-Hierarchical Agglomerative Clustering and Davis-Bouldin Index”, International Journal of Intelligent Engineering and Systems, Vol. 15, No. 2, pp. 441– 453, 2022, doi:10.22266/ijies2022.0430.40. DOI: https://doi.org/10.22266/ijies2022.0430.40
H. Mo, H. Hao, and H. Li, “Geometric Moment Invariants to Spatial Transform and N-Fold Symmetric Blur”, Pattern Recognition, Vol. 115, 2021, doi:10.1016/j.patcog.2021.107887. DOI: https://doi.org/10.1016/j.patcog.2021.107887
A. Daoui, H. Karmouni, M. Sayyouri, H. Qjidaa, M. Maaroufi, and B. Alami,” New Robust Method for Image Copyright Protection Using Histogram Features and Sine Cosine Algorithm”, Expert Systems with Applications, Vol. 177, pp.1-18, Sep. 2021, doi:10.1016/j.eswa.2021.114978. DOI: https://doi.org/10.1016/j.eswa.2021.114978
K. Djunaidi, H. B. Agtriadi, D. Kuswardani, and Y. S. Purwanto, “Gray Level Co-occurrence Matrix Feature Extraction and Histogram in Breast Cancer Classification with Ultrasonographic Imagery”, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 22, No. 2, May 2021, pp. 795-800, doi:10.11591/ijeecs.v22.i2.pp795-800. DOI: https://doi.org/10.11591/ijeecs.v22.i2.pp795-800
R. M. Haralick, K. Shanmugam, and I. Dinstein,” Textural Features for Image Classification”, in IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, pp. 610-621, 1973, doi:10.1109/TSMC.1973.4309314. DOI: https://doi.org/10.1109/TSMC.1973.4309314
S. A. Alazawi, N. M. Shati, and A. H. Abbas,” Texture Features Extraction Based on GLCM for Face Retrieval System”, Period. Eng. Nat. Sci., Vol. 7, No. 3, pp. 1459–1467, 2019, doi:10.21533/pen.v7i3.787. DOI: https://doi.org/10.21533/pen.v7i3.787
A. Ramola, A. K. Shakya, and D. V. Pham,” Study of Statistical Methods for Texture Analysis and Their Modern Evolutions”, Eng. Reports, Vol. 2, No. 4: e12149, pp. 1–24, 2020, doi:10.1002/eng2.12149. DOI: https://doi.org/10.1002/eng2.12149
C. Qi, H.-B. Ly, L. M. Le, X. Yang, L. Guo, and B. T. Pham,” Improved Strength Prediction of Cemented Paste Backfill Using a Novel Model Based on Adaptive Neuro Fuzzy Inference System and Artificial Bee Colony”, Construction and Building Materials, Vol. 284, pp. 1-14, 2021, doi:10.1016/j.conbuildmat.2021.122857. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122857
A. Tay, F. Lafont, and J.-F. Balmat,” Forecasting Pest Risk Level in Roses Greenhouse: Adaptive Neuro-Fuzzy Inference System vs Artificial Neural Networks”, Information Processing in Agriculture, Vol. 8, No. 3, pp. 386-397, 2021, doi:10.1016/j.inpa.2020.10.005. DOI: https://doi.org/10.1016/j.inpa.2020.10.005
İ. Güler, and E. D. Übeyli,” Adaptive Neuro-Fuzzy Inference System for Classification of EEG Signals Using Wavelet Coefficients”, Journal of Neuroscience Methods, Vol. 148, No. 2, pp. 113–121, 2005, doi:10.1016/j.jneumeth.2005.04.013. DOI: https://doi.org/10.1016/j.jneumeth.2005.04.013
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.