Advancing Breast Cancer Therapy with Iron Oxide Nanoparticles

Authors

  • Soumitra Mandal Department of Chemistry, Fakir Chand College, Diamond Harbour- 743331, South 24- Parganas, West Bengal, India Author

DOI:

https://doi.org/10.32628/IJSRSET25122103

Keywords:

Iron Oxide Nanoparticles (IONPs), Nanomedicine, Cancer Theranostics, Breast Cancer Care, Targeted Drug Delivery

Abstract

Breast cancer remains a leading cause of morbidity and mortality among women worldwide, presenting a pressing challenge for global health. The integration of nanotechnology into cancer care offers transformative opportunities to improve diagnostics, therapeutic interventions, and monitoring. Among various nanomaterials, iron oxide nanoparticles (IONPs) stand out for their distinctive physicochemical properties, including superparamagnetism, excellent biocompatibility, and the flexibility for surface functionalization. This article delves into the diverse applications of IONPs in breast cancer care, focusing on breakthroughs in imaging modalities, precision-targeted drug delivery systems, and innovative therapeutic strategies. By analyzing the latest research findings and clinical trial data, we present a detailed exploration of how IONPs can significantly advance the landscape of breast cancer management, paving the way for personalized and effective patient care.

Downloads

Download data is not yet available.

References

A. Ahmad, “Breast Cancer Statistics: Recent Trends,” in Breast Cancer Metastasis and Drug Resistance, vol. 1152, A. Ahmad, Ed., in Advances in Experimental Medicine and Biology, vol. 1152. , Cham: Springer International Publishing, 2019, pp. 1–7. doi: 10.1007/978-3-030-20301-6_1.

M. Arnold et al., “Current and future burden of breast cancer: Global statistics for 2020 and 2040,” The Breast, vol. 66, pp. 15–23, Dec. 2022, doi: 10.1016/j.breast.2022.08.010.

L. Wilkinson and T. Gathani, “Understanding breast cancer as a global health concern,” Br. J. Radiol., vol. 95, no. 1130, p. 20211033, Feb. 2022, doi: 10.1259/bjr.20211033.

X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047.

S. N. Aleksakhina, A. Kashyap, and E. N. Imyanitov, “Mechanisms of acquired tumor drug resistance,” Biochim. Biophys. Acta BBA - Rev. Cancer, vol. 1872, no. 2, p. 188310, Dec. 2019, doi: 10.1016/j.bbcan.2019.188310.

S. Crucitta et al., “Treatment-driven tumour heterogeneity and drug resistance: Lessons from solid tumours,” Cancer Treat. Rev., vol. 104, p. 102340, Mar. 2022, doi: 10.1016/j.ctrv.2022.102340.

G. Gu, D. Dustin, and S. A. Fuqua, “Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment,” Curr. Opin. Pharmacol., vol. 31, pp. 97–103, Dec. 2016, doi: 10.1016/j.coph.2016.11.005.

M. Labrie, J. S. Brugge, G. B. Mills, and I. K. Zervantonakis, “Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer,” Nat. Rev. Cancer, vol. 22, no. 6, pp. 323–339, Jun. 2022, doi: 10.1038/s41568-022-00454-5.

Z.-F. Lim and P. C. Ma, “Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy,” J. Hematol. Oncol.J Hematol Oncol, vol. 12, no. 1, p. 134, Dec. 2019, doi: 10.1186/s13045-019-0818-2.

T. Saha and K. E. Lukong, “Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance,” Front. Oncol., vol. 12, p. 856974, Mar. 2022, doi: 10.3389/fonc.2022.856974.

N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, and S. Ramakrishna, “Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future,” Materials, vol. 13, no. 20, p. 4644, Oct. 2020, doi: 10.3390/ma13204644.

E. Aram et al., “Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects,” Nanomaterials, vol. 12, no. 20, p. 3567, Oct. 2022, doi: 10.3390/nano12203567.

P. R. S. Baabu, H. K. Kumar, M. B. Gumpu, J. Babu K, A. J. Kulandaisamy, and J. B. B. Rayappan, “Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications,” Materials, vol. 16, no. 1, p. 59, Dec. 2022, doi: 10.3390/ma16010059.

R. S. Chouhan, M. Horvat, J. Ahmed, N. Alhokbany, S. M. Alshehri, and S. Gandhi, “Magnetic Nanoparticles—A Multifunctional Potential Agent for Diagnosis and Therapy,” Cancers, vol. 13, no. 9, p. 2213, May 2021, doi: 10.3390/cancers13092213.

M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.

P. Farinha, J. M. P. Coelho, C. P. Reis, and M. M. Gaspar, “A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics,” Nanomaterials, vol. 11, no. 12, p. 3432, Dec. 2021, doi: 10.3390/nano11123432.

C. Han et al., “Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells,” Anal. Chim. Acta, vol. 1067, pp. 115–128, Aug. 2019, doi: 10.1016/j.aca.2019.03.054.

M. Rahman, “Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine,” Nanotheranostics, vol. 7, no. 4, pp. 424–449, 2023, doi: 10.7150/ntno.86467.

L. Wu, C. Wang, and Y. Li, “Iron Oxide Nanoparticle Targeting Mechanism and its Application in Tumor Magnetic Resonance Imaging and Therapy,” Nanomed., vol. 17, no. 21, pp. 1567–1583, Sep. 2022, doi: 10.2217/nnm-2022-0246.

E. Alphandéry, “Iron oxide nanoparticles for therapeutic applications,” Drug Discov. Today, vol. 25, no. 1, pp. 141–149, Jan. 2020, doi: 10.1016/j.drudis.2019.09.020.

A. N. Al-Thani, A. G. Jan, M. Abbas, M. Geetha, and K. K. Sadasivuni, “Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review,” Life Sci., vol. 352, p. 122899, Sep. 2024, doi: 10.1016/j.lfs.2024.122899.

V. Sachdeva, A. Monga, R. Vashisht, D. Singh, A. Singh, and N. Bedi, “Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy,” J. Drug Deliv. Sci. Technol., vol. 74, p. 103585, Aug. 2022, doi: 10.1016/j.jddst.2022.103585.

M. Saeed, W. Ren, and A. Wu, “Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances,” Biomater. Sci., vol. 6, no. 4, pp. 708–725, 2018, doi: 10.1039/C7BM00999B.

H. Etemadi and P. G. Plieger, “Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances,” Adv. Ther., vol. 3, no. 11, p. 2000061, Nov. 2020, doi: 10.1002/adtp.202000061.

H. Gavilán et al., “Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer,” Chem. Soc. Rev., vol. 50, no. 20, pp. 11614–11667, 2021, doi: 10.1039/D1CS00427A.

S. K. Sharma, N. Shrivastava, F. Rossi, L. D. Tung, and N. T. K. Thanh, “Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment,” Nano Today, vol. 29, p. 100795, Dec. 2019, doi: 10.1016/j.nantod.2019.100795.

A. T. Shivanna, B. S. Dash, and J.-P. Chen, “Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies,” Micromachines, vol. 13, no. 8, p. 1279, Aug. 2022, doi: 10.3390/mi13081279.

B. Govindan, M. A. Sabri, A. Hai, F. Banat, and M. A. Haija, “A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach,” Pharmaceutics, vol. 15, no. 3, p. 868, Mar. 2023, doi: 10.3390/pharmaceutics15030868.

O. Ouled Ltaief et al., “Recent developments in cancer diagnosis and treatment using nanotechnology,” Ann. Med. Surg., vol. 86, no. 8, pp. 4541–4554, Aug. 2024, doi: 10.1097/MS9.0000000000002271.

A. Nehe and A. Kulkarni, “Fundamentals of Superparamagnetic Iron Oxide Nanoparticles: Recent Update,” J. Microsc. Ultrastruct., vol. 0, no. 0, p. 0, 2023, doi: 10.4103/jmau.jmau_17_22.

M.-N. Savari and A. Jabali, “Properties of Iron Oxide Nanoparticles (IONPs),” in Theranostic Iron-Oxide Based Nanoplatforms in Oncology, in Nanomedicine and Nanotoxicology. , Singapore: Springer Nature Singapore, 2023, pp. 49–65. doi: 10.1007/978-981-99-6507-6_4.

H. Ghazal et al., “Role of nanoparticles in enhancing chemotherapy efficacy for cancer treatment,” Mater., vol. 2, p. 100128, Jan. 2024, doi: 10.1016/j.nxmate.2024.100128.

M. I. Khan et al., “Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review,” ACS Appl. Bio Mater., vol. 5, no. 3, pp. 971–1012, Mar. 2022, doi: 10.1021/acsabm.2c00002.

J. B. Oehler, W. Rajapaksha, and H. Albrecht, “Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer,” J. Pers. Med., vol. 14, no. 7, p. 723, Jul. 2024, doi: 10.3390/jpm14070723.

L. Sun et al., “Smart nanoparticles for cancer therapy,” Signal Transduct. Target. Ther., vol. 8, no. 1, p. 418, Nov. 2023, doi: 10.1038/s41392-023-01642-x.

R. Al-Shalabi, R. Abu-Huwaij, R. Hamed, and M. M. Abbas, “The antimicrobial and the antiproliferative effect of human triple negative breast cancer cells using the greenly synthesized iron oxide nanoparticles,” J. Drug Deliv. Sci. Technol., vol. 75, p. 103642, Sep. 2022, doi: 10.1016/j.jddst.2022.103642.

J. Halder et al., “Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer,” J. Drug Target., pp. 1–21, Jul. 2022, doi: 10.1080/1061186X.2022.2095389.

Md. S. Shakil, Md. A. Hasan, and S. R. Sarker, “Iron Oxide Nanoparticles for Breast Cancer Theranostics,” Curr. Drug Metab., vol. 20, no. 6, pp. 446–456, Jul. 2019, doi: 10.2174/1389200220666181122105043.

S. Thoidingjam and A. B. Tiku, “New developments in breast cancer therapy: role of iron oxide nanoparticles,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 8, no. 2, p. 023002, Jun. 2017, doi: 10.1088/2043-6254/aa5e33.

H. Hosseinkazemi et al., “Applications of Iron Oxide Nanoparticles against Breast Cancer,” J. Nanomater., vol. 2022, no. 1, p. 6493458, Jan. 2022, doi: 10.1155/2022/6493458.

M. Xie et al., “Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery,” Int. J. Nanomedicine, vol. Volume 19, pp. 8437–8461, Aug. 2024, doi: 10.2147/IJN.S477652.

J. Zhang, T. Zhang, and J. Gao, “Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review,” Nanomaterials, vol. 12, no. 19, p. 3323, Sep. 2022, doi: 10.3390/nano12193323.

S. Ghosh et al., “Diosgenin Functionalized Iron Oxide Nanoparticles as Novel Nanomaterial Against Breast Cancer,” J. Nanosci. Nanotechnol., vol. 15, no. 12, pp. 9464–9472, Dec. 2015, doi: 10.1166/jnn.2015.11704.

M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.

W. Xie et al., “Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics,” Theranostics, vol. 8, no. 12, pp. 3284–3307, 2018, doi: 10.7150/thno.25220.

L. Zhu, Z. Zhou, H. Mao, and L. Yang, “Magnetic Nanoparticles for Precision Oncology: Theranostic Magnetic Iron Oxide Nanoparticles for Image-Guided and Targeted Cancer Therapy,” Nanomed., vol. 12, no. 1, pp. 73–87, Jan. 2017, doi: 10.2217/nnm-2016-0316.

H. Arami, A. Khandhar, D. Liggitt, and K. M. Krishnan, “In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles,” Chem. Soc. Rev., vol. 44, no. 23, pp. 8576–8607, 2015, doi: 10.1039/C5CS00541H.

L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, and D. D. Berhanuddin, “Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation,” Magnetochemistry, vol. 6, no. 4, p. 68, Dec. 2020, doi: 10.3390/magnetochemistry6040068.

L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, “Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications,” Chem. Rev., vol. 112, no. 11, pp. 5818–5878, Nov. 2012, doi: 10.1021/cr300068p.

B. Rezaei et al., “Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review,” Adv. Healthc. Mater., p. 2401213, Jun. 2024, doi: 10.1002/adhm.202401213.

V. V. Chrishtop, V. A. Mironov, A. Y. Prilepskii, V. G. Nikonorova, and V. V. Vinogradov, “Organ-specific toxicity of magnetic iron oxide-based nanoparticles,” Nanotoxicology, vol. 15, no. 2, pp. 167–204, Feb. 2021, doi: 10.1080/17435390.2020.1842934.

U. S. Ezealigo, B. N. Ezealigo, S. O. Aisida, and F. I. Ezema, “Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective,” JCIS Open, vol. 4, p. 100027, Dec. 2021, doi: 10.1016/j.jciso.2021.100027.

A. Shah and M. A. Dobrovolskaia, “Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations,” Nanomedicine Nanotechnol. Biol. Med., vol. 14, no. 3, pp. 977–990, Apr. 2018, doi: 10.1016/j.nano.2018.01.014.

J. Estelrich and M. A. Busquets, “Iron Oxide Nanoparticles in Photothermal Therapy,” Molecules, vol. 23, no. 7, p. 1567, Jun. 2018, doi: 10.3390/molecules23071567.

N. Lamichhane, S. Sharma, Parul, A. Verma, I. Roy, and T. Sen, “Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications,” Biomedicines, vol. 9, no. 3, p. 288, Mar. 2021, doi: 10.3390/biomedicines9030288.

A. G. Roca et al., “Iron oxide nanoparticles (Fe3O4, γ -Fe2O3 and FeO) as photothermal heat mediators in the first, second and third biological windows,” Phys. Rep., vol. 1043, pp. 1–35, Dec. 2023, doi: 10.1016/j.physrep.2023.10.003.

F. Khan, M. N. Karimi, and O. Khan, “Exploring the scalability and commercial viability of biosynthesized nanoparticles for cooling panels with the help of Artificial Intelligence and solar energy systems,” Green Technol. Sustain., vol. 1, no. 3, p. 100036, Sep. 2023, doi: 10.1016/j.grets.2023.100036.

P. Kumar et al., “Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons,” Coord. Chem. Rev., vol. 507, p. 215750, May 2024, doi: 10.1016/j.ccr.2024.215750.

A. G. Leonel, A. A. P. Mansur, and H. S. Mansur, “Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review,” Water Res., vol. 190, p. 116693, Feb. 2021, doi: 10.1016/j.watres.2020.116693.

M. O. Besenhard et al., “Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry,” Chem. Eng. J., vol. 399, p. 125740, Nov. 2020, doi: 10.1016/j.cej.2020.125740.

M. Farahmandjou and F. Soflaee, “Synthesis and Characterization of α-Fe2O3 Nanoparticles by Simple Co-Precipitation Method,” Phys. Chem. Res., vol. 3, no. 3, Sep. 2015, doi: 10.22036/pcr.2015.9193.

A. P. LaGrow et al., “Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-Ray diffraction in solution,” Nanoscale, vol. 11, no. 14, pp. 6620–6628, 2019, doi: 10.1039/C9NR00531E.

S. Riaz, M. Bashir, and S. Naseem, “Iron Oxide Nanoparticles Prepared by Modified Co-Precipitation Method,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1–4, Jan. 2014, doi: 10.1109/TMAG.2013.2277614.

V. Fokina, M. Wilke, M. Dulle, S. Ehlert, and S. Förster, “Size Control of Iron Oxide Nanoparticles Synthesized by Thermal Decomposition Methods,” J. Phys. Chem. C, vol. 126, no. 50, pp. 21356–21367, Dec. 2022, doi: 10.1021/acs.jpcc.2c05380.

W. Glasgow et al., “Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition,” Particuology, vol. 26, pp. 47–53, Jun. 2016, doi: 10.1016/j.partic.2015.09.011.

L. Gonzalez-Moragas, S.-M. Yu, N. Murillo-Cremaes, A. Laromaine, and A. Roig, “Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition,” Chem. Eng. J., vol. 281, pp. 87–95, Dec. 2015, doi: 10.1016/j.cej.2015.06.066.

R. Hufschmid et al., “Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition,” Nanoscale, vol. 7, no. 25, pp. 11142–11154, 2015, doi: 10.1039/C5NR01651G.

M. Unni et al., “Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen,” ACS Nano, vol. 11, no. 2, pp. 2284–2303, Feb. 2017, doi: 10.1021/acsnano.7b00609.

T. Adschiri, Y. Hakuta, K. Sue, and K. Arai, “Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions,” J. Nanoparticle Res., vol. 3, no. 2/3, pp. 227–235, 2001, doi: 10.1023/A:1017541705569.

S. Ge et al., “Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties,” J. Phys. Chem. C, vol. 113, no. 31, pp. 13593–13599, Aug. 2009, doi: 10.1021/jp902953t.

F. Ozel, H. Kockar, and O. Karaagac, “Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size,” J. Supercond. Nov. Magn., vol. 28, no. 3, pp. 823–829, Mar. 2015, doi: 10.1007/s10948-014-2707-9.

S. Takami, T. Sato, T. Mousavand, S. Ohara, M. Umetsu, and T. Adschiri, “Hydrothermal synthesis of surface-modified iron oxide nanoparticles,” Mater. Lett., vol. 61, no. 26, pp. 4769–4772, Oct. 2007, doi: 10.1016/j.matlet.2007.03.024.

C. Xu and A. S. Teja, “Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles,” J. Supercrit. Fluids, vol. 44, no. 1, pp. 85–91, Feb. 2008, doi: 10.1016/j.supflu.2007.09.033.

I. Fernández-Barahona, M. Muñoz-Hernando, J. Ruiz-Cabello, F. Herranz, and J. Pellico, “Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging,” Inorganics, vol. 8, no. 4, p. 28, Apr. 2020, doi: 10.3390/inorganics8040028.

M. Jeon, M. V. Halbert, Z. R. Stephen, and M. Zhang, “Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives,” Adv. Mater., vol. 33, no. 23, p. 1906539, Jun. 2021, doi: 10.1002/adma.201906539.

A. Avasthi, C. Caro, E. Pozo‑Torres, M. P. Leal, and M. L. García‑Martín, “Magnetic Nanoparticles as MRI Contrast Agents,” in Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications, A. R. Puente-Santiago and D. Rodríguez-Padrón, Eds., in Topics in Current Chemistry Collections. , Cham: Springer International Publishing, 2020, pp. 49–91. doi: 10.1007/978-3-030-55502-3_3.

D. Zhi, T. Yang, J. Yang, S. Fu, and S. Zhang, “Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy,” Acta Biomater., vol. 102, pp. 13–34, Jan. 2020, doi: 10.1016/j.actbio.2019.11.027.

A. L. Cortajarena et al., “Engineering Iron Oxide Nanoparticles for Clinical Settings,” Nanobiomedicine, vol. 1, p. 2, Jan. 2014, doi: 10.5772/58841.

M. Abdelmonem, E. L. Albert, N. K. R. Zainon, E. Z. Tarmizie, S. H. Zyoud, and C. A. C. Abdullah, “Biosynthesis of Iron Oxide Nanoparticles (IONPs): Toxicity Evaluation and Applications for Magnetic Resonance Imaging and Magnetic Hyperthermia,” in Emerging Applications of Novel Nanoparticles, vol. 37, S. Anil Bansal, V. Khanna, N. Balakrishnan, and P. Gupta, Eds., in Lecture Notes in Nanoscale Science and Technology, vol. 37. , Cham: Springer Nature Switzerland, 2024, pp. 229–249. doi: 10.1007/978-3-031-57843-4_9.

A. N. Al-Thani, A. G. Jan, M. Abbas, M. Geetha, and K. K. Sadasivuni, “Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review,” Life Sci., vol. 352, p. 122899, Sep. 2024, doi: 10.1016/j.lfs.2024.122899.

J. Halder et al., “Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer,” J. Drug Target., pp. 1–21, Jul. 2022, doi: 10.1080/1061186X.2022.2095389.

M. Sharifi, A. Hasan, F. Attar, A. Taghizadeh, and M. Falahati, “Development of point-of-care nanobiosensors for breast cancers diagnosis,” Talanta, vol. 217, p. 121091, Sep. 2020, doi: 10.1016/j.talanta.2020.121091.

L. Sitia et al., “HER-2-Targeted Nanoparticles for Breast Cancer Diagnosis and Treatment,” Cancers, vol. 14, no. 10, p. 2424, May 2022, doi: 10.3390/cancers14102424.

M. A. Subhan, “Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics,” RSC Adv., vol. 12, no. 51, pp. 32956–32978, 2022, doi: 10.1039/D2RA02005J.

R. S. Chouhan, M. Horvat, J. Ahmed, N. Alhokbany, S. M. Alshehri, and S. Gandhi, “Magnetic Nanoparticles—A Multifunctional Potential Agent for Diagnosis and Therapy,” Cancers, vol. 13, no. 9, p. 2213, May 2021, doi: 10.3390/cancers13092213.

M. Kumar, P. Kumar, S. Sagar, and A. Chaudhary, “Iron oxide nanoparticles approaching to eradicate her2-positive breast cancer: A review,” Int. J. Health Sci., pp. 12680–12707, Jun. 2022, doi: 10.53730/ijhs.v6nS2.8308.

L. Sitia et al., “HER-2-Targeted Nanoparticles for Breast Cancer Diagnosis and Treatment,” Cancers, vol. 14, no. 10, p. 2424, May 2022, doi: 10.3390/cancers14102424.

M. A. Subhan, “Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics,” RSC Adv., vol. 12, no. 51, pp. 32956–32978, 2022, doi: 10.1039/D2RA02005J.

P. Farinha, J. M. P. Coelho, C. P. Reis, and M. M. Gaspar, “A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics,” Nanomaterials, vol. 11, no. 12, p. 3432, Dec. 2021, doi: 10.3390/nano11123432.

B. Govindan, M. A. Sabri, A. Hai, F. Banat, and M. A. Haija, “A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach,” Pharmaceutics, vol. 15, no. 3, p. 868, Mar. 2023, doi: 10.3390/pharmaceutics15030868.

M. A. Subhan, “Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics,” RSC Adv., vol. 12, no. 51, pp. 32956–32978, 2022, doi: 10.1039/D2RA02005J.

J. Halder et al., “Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer,” J. Drug Target., pp. 1–21, Jul. 2022, doi: 10.1080/1061186X.2022.2095389.

M. Saeed, W. Ren, and A. Wu, “Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances,” Biomater. Sci., vol. 6, no. 4, pp. 708–725, 2018, doi: 10.1039/C7BM00999B.

Md. S. Shakil, Md. A. Hasan, and S. R. Sarker, “Iron Oxide Nanoparticles for Breast Cancer Theranostics,” Curr. Drug Metab., vol. 20, no. 6, pp. 446–456, Jul. 2019, doi: 10.2174/1389200220666181122105043.

M. A. Subhan, “Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics,” RSC Adv., vol. 12, no. 51, pp. 32956–32978, 2022, doi: 10.1039/D2RA02005J.

H. Hosseinkazemi et al., “Applications of Iron Oxide Nanoparticles against Breast Cancer,” J. Nanomater., vol. 2022, no. 1, p. 6493458, Jan. 2022, doi: 10.1155/2022/6493458.

I. I. Lungu et al., “Doxorubicin-Conjugated Iron Oxide Nanoparticles Synthesized by Laser Pyrolysis: In Vitro Study on Human Breast Cancer Cells,” Polymers, vol. 12, no. 12, p. 2799, Nov. 2020, doi: 10.3390/polym12122799.

M. Norouzi, V. Yathindranath, J. A. Thliveris, B. M. Kopec, T. J. Siahaan, and D. W. Miller, “Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles,” Sci. Rep., vol. 10, no. 1, p. 11292, Jul. 2020, doi: 10.1038/s41598-020-68017-y.

K. Griswold et al., “Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo,” Int. J. Nanomedicine, p. 2595, Apr. 2015, doi: 10.2147/IJN.S79367.

S. Rajkumar and M. Prabaharan, “Multi-functional nanocarriers based on iron oxide nanoparticles conjugated with doxorubicin, poly(ethylene glycol) and folic acid as theranostics for cancer therapy,” Colloids Surf. B Biointerfaces, vol. 170, pp. 529–537, Oct. 2018, doi: 10.1016/j.colsurfb.2018.06.051.

Md. S. Shakil, Md. A. Hasan, and S. R. Sarker, “Iron Oxide Nanoparticles for Breast Cancer Theranostics,” Curr. Drug Metab., vol. 20, no. 6, pp. 446–456, Jul. 2019, doi: 10.2174/1389200220666181122105043.

M. A. Subhan, “Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics,” RSC Adv., vol. 12, no. 51, pp. 32956–32978, 2022, doi: 10.1039/D2RA02005J.

S. Thoidingjam and A. B. Tiku, “New developments in breast cancer therapy: role of iron oxide nanoparticles,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 8, no. 2, p. 023002, Jun. 2017, doi: 10.1088/2043-6254/aa5e33.

M. E. Lorkowski, P. U. Atukorale, K. B. Ghaghada, and E. Karathanasis, “Stimuli‐Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy,” Adv. Healthc. Mater., vol. 10, no. 5, p. 2001044, Mar. 2021, doi: 10.1002/adhm.202001044.

M. A. Subhan, “Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics,” RSC Adv., vol. 12, no. 51, pp. 32956–32978, 2022, doi: 10.1039/D2RA02005J.

L. Sun et al., “Smart nanoparticles for cancer therapy,” Signal Transduct. Target. Ther., vol. 8, no. 1, p. 418, Nov. 2023, doi: 10.1038/s41392-023-01642-x.

S. Thoidingjam and A. B. Tiku, “New developments in breast cancer therapy: role of iron oxide nanoparticles,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 8, no. 2, p. 023002, Jun. 2017, doi: 10.1088/2043-6254/aa5e33.

M. E. Lorkowski, P. U. Atukorale, K. B. Ghaghada, and E. Karathanasis, “Stimuli‐Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy,” Adv. Healthc. Mater., vol. 10, no. 5, p. 2001044, Mar. 2021, doi: 10.1002/adhm.202001044.

S. Patri, N. T. K. Thanh, and N. Kamaly, “Magnetic iron oxide nanogels for combined hyperthermia and drug delivery for cancer treatment,” Nanoscale, vol. 16, no. 33, pp. 15446–15464, 2024, doi: 10.1039/D4NR02058H.

M. V. Shestovskaya, A. L. Luss, O. A. Bezborodova, V. V. Makarov, and A. A. Keskinov, “Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity,” Pharmaceutics, vol. 15, no. 10, p. 2406, Sep. 2023, doi: 10.3390/pharmaceutics15102406.

H. Hosseinkazemi et al., “Applications of Iron Oxide Nanoparticles against Breast Cancer,” J. Nanomater., vol. 2022, no. 1, p. 6493458, Jan. 2022, doi: 10.1155/2022/6493458.

M. Salimi, S. Sarkar, R. Saber, H. Delavari, A. M. Alizadeh, and H. T. Mulder, “Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles,” Cancer Nanotechnol., vol. 9, no. 1, p. 7, Dec. 2018, doi: 10.1186/s12645-018-0042-8.

C. Pucci, A. Degl’Innocenti, M. Belenli Gümüş, and G. Ciofani, “Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era,” Biomater. Sci., vol. 10, no. 9, pp. 2103–2121, 2022, doi: 10.1039/D1BM01963E.

Md. S. Shakil, Md. A. Hasan, and S. R. Sarker, “Iron Oxide Nanoparticles for Breast Cancer Theranostics,” Curr. Drug Metab., vol. 20, no. 6, pp. 446–456, Jul. 2019, doi: 10.2174/1389200220666181122105043.

M. A. Subhan, “Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics,” RSC Adv., vol. 12, no. 51, pp. 32956–32978, 2022, doi: 10.1039/D2RA02005J.

M. Xie et al., “Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery,” Int. J. Nanomedicine, vol. Volume 19, pp. 8437–8461, Aug. 2024, doi: 10.2147/IJN.S477652.

J. Halder et al., “Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer,” J. Drug Target., pp. 1–21, Jul. 2022, doi: 10.1080/1061186X.2022.2095389.

H. Hosseinkazemi et al., “Applications of Iron Oxide Nanoparticles against Breast Cancer,” J. Nanomater., vol. 2022, no. 1, p. 6493458, Jan. 2022, doi: 10.1155/2022/6493458.

N. Srivastava, B. Chudasama, and M. Baranwal, “Advancement in magnetic hyperthermia-based targeted therapy for cancer treatment,” Biointerphases, vol. 18, no. 6, p. 060801, Nov. 2023, doi: 10.1116/6.0003079.

D. Zhi, T. Yang, J. Yang, S. Fu, and S. Zhang, “Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy,” Acta Biomater., vol. 102, pp. 13–34, Jan. 2020, doi: 10.1016/j.actbio.2019.11.027.

J. Halder et al., “Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer,” J. Drug Target., pp. 1–21, Jul. 2022, doi: 10.1080/1061186X.2022.2095389.

Q. Mu et al., “Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer,” Mater. Today, vol. 50, pp. 149–169, Nov. 2021, doi: 10.1016/j.mattod.2021.08.002.

V. Mulens-Arias, J. M. Rojas, and D. F. Barber, “The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment,” Front. Immunol., vol. 12, p. 693709, Jun. 2021, doi: 10.3389/fimmu.2021.693709.

C. S. Nascimento, É. A. R. Alves, C. P. De Melo, R. Corrêa-Oliveira, and C. E. Calzavara-Silva, “Immunotherapy for Cancer: Effects of Iron Oxide Nanoparticles on Polarization of Tumor-Associated Macrophages,” Nanomed., vol. 16, no. 29, pp. 2633–2650, Dec. 2021, doi: 10.2217/nnm-2021-0255.

S. Chung, R. A. Revia, and M. Zhang, “Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy,” Nanoscale Horiz., vol. 6, no. 9, pp. 696–717, 2021, doi: 10.1039/D1NH00179E.

J. Halder et al., “Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer,” J. Drug Target., pp. 1–21, Jul. 2022, doi: 10.1080/1061186X.2022.2095389.

W. Liu et al., “Transition Metal Oxide Nanomaterials: New Weapons to Boost Anti-Tumor Immunity Cycle,” Nanomaterials, vol. 14, no. 13, p. 1064, Jun. 2024, doi: 10.3390/nano14131064.

Q. Mu et al., “Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer,” Mater. Today, vol. 50, pp. 149–169, Nov. 2021, doi: 10.1016/j.mattod.2021.08.002.

V. Mulens-Arias, J. M. Rojas, and D. F. Barber, “The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment,” Front. Immunol., vol. 12, p. 693709, Jun. 2021, doi: 10.3389/fimmu.2021.693709.

P. B. Balakrishnan, E. E. Sweeney, A. S. Ramanujam, and R. Fernandes, “Photothermal therapies to improve immune checkpoint blockade for cancer,” Int. J. Hyperthermia, vol. 37, no. 3, pp. 34–49, Dec. 2020, doi: 10.1080/02656736.2020.1797190.

H. Cheng, H. Tsao, C. Chiang, and S. Chen, “Advances in Magnetic Nanoparticle‐Mediated Cancer Immune‐Theranostics,” Adv. Healthc. Mater., vol. 10, no. 1, p. 2001451, Jan. 2021, doi: 10.1002/adhm.202001451.

C. Cremolini, E. Vitale, R. Rastaldo, and C. Giachino, “Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy,” Nanomaterials, vol. 11, no. 3, p. 661, Mar. 2021, doi: 10.3390/nano11030661.

A. N. Al-Thani, A. G. Jan, M. Abbas, M. Geetha, and K. K. Sadasivuni, “Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review,” Life Sci., vol. 352, p. 122899, Sep. 2024, doi: 10.1016/j.lfs.2024.122899.

E. Aram et al., “Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects,” Nanomaterials, vol. 12, no. 20, p. 3567, Oct. 2022, doi: 10.3390/nano12203567.

S. Chung, R. A. Revia, and M. Zhang, “Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy,” Nanoscale Horiz., vol. 6, no. 9, pp. 696–717, 2021, doi: 10.1039/D1NH00179E.

N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon, “Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy,” Chem. Rev., vol. 115, no. 19, pp. 10637–10689, Oct. 2015, doi: 10.1021/acs.chemrev.5b00112.

X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047.

J. E. Ogbezode, U. S. Ezealigo, A. Bello, V. C. Anye, and A. P. Onwualu, “A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles,” Discov. Nano, vol. 18, no. 1, p. 125, Oct. 2023, doi: 10.1186/s11671-023-03898-2.

M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.

M. T. Yassin, F. O. Al-Otibi, S. A. Al-Sahli, M. S. El-Wetidy, and S. Mohamed, “Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities,” Cancers, vol. 16, no. 24, p. 4234, Dec. 2024, doi: 10.3390/cancers16244234.

J. B. Oehler, W. Rajapaksha, and H. Albrecht, “Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer,” J. Pers. Med., vol. 14, no. 7, p. 723, Jul. 2024, doi: 10.3390/jpm14070723.

P. Singh et al., “Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications,” Adv. Healthc. Mater., vol. 14, no. 4, p. 2403059, Feb. 2025, doi: 10.1002/adhm.202403059.

D. Tripathi, P. Pandey, S. Sharma, A. K. Rai, and M. Prabhu B.H., “Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity,” BioImpacts, p. 1, Nov. 2024, doi: 10.34172/bi.30573.

R. Soomro, M. Abdelmonem, A. D. Meli, M. Panhwar, and C. A. Che Abdullah, “A novel plant-based approach for synthesis of iron oxide nanoparticles and cancer therapy,” Discov. Chem., vol. 2, no. 1, p. 25, Feb. 2025, doi: 10.1007/s44371-025-00091-5.

J. Zhang, T. Zhang, and J. Gao, “Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review,” Nanomaterials, vol. 12, no. 19, p. 3323, Sep. 2022, doi: 10.3390/nano12193323.

S. Bauri, S. Tripathi, A. M. Choudhury, S. S. Mandal, H. Raj, and P. Maiti, “Nanomaterials as Theranostic Agents for Cancer Therapy,” ACS Appl. Nano Mater., vol. 6, no. 23, pp. 21462–21495, Dec. 2023, doi: 10.1021/acsanm.3c04235.

A. Mhaske, S. Dighe, S. Ghosalkar, V. Tanna, P. Ravikumar, and S. P. Sawarkar, “Limitations of Current Cancer Theranostics,” in Cancer Nanotheranostics, M. Saravanan and H. Barabadi, Eds., in Nanotechnology in the Life Sciences. , Cham: Springer International Publishing, 2021, pp. 305–332. doi: 10.1007/978-3-030-76263-6_12.

N. Parvin, V. Kumar, T. K. Mandal, and S. W. Joo, “Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics,” J. Funct. Biomater., vol. 15, no. 8, p. 226, Aug. 2024, doi: 10.3390/jfb15080226.

A. Prina-Mello, “Multiparametric Preclinical Assessment of Theranostics Materials,” in Handbook of Nanomaterials for Cancer Theranostics, Elsevier, 2018, pp. 517–535. doi: 10.1016/B978-0-12-813339-2.00017-7.

V. Sachdeva, A. Monga, R. Vashisht, D. Singh, A. Singh, and N. Bedi, “Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy,” J. Drug Deliv. Sci. Technol., vol. 74, p. 103585, Aug. 2022, doi: 10.1016/j.jddst.2022.103585.

M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.

R. Soomro, M. Abdelmonem, A. D. Meli, M. Panhwar, and C. A. Che Abdullah, “A novel plant-based approach for synthesis of iron oxide nanoparticles and cancer therapy,” Discov. Chem., vol. 2, no. 1, p. 25, Feb. 2025, doi: 10.1007/s44371-025-00091-5.

A. N. Al-Thani, A. G. Jan, M. Abbas, M. Geetha, and K. K. Sadasivuni, “Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review,” Life Sci., vol. 352, p. 122899, Sep. 2024, doi: 10.1016/j.lfs.2024.122899.

J. B. Oehler, W. Rajapaksha, and H. Albrecht, “Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer,” J. Pers. Med., vol. 14, no. 7, p. 723, Jul. 2024, doi: 10.3390/jpm14070723.

P. Singh et al., “Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications,” Adv. Healthc. Mater., vol. 14, no. 4, p. 2403059, Feb. 2025, doi: 10.1002/adhm.202403059.

P. Chambial, N. Thakur, A. Sood, M. Saeed, and I. Ahmad, “Sequential catalytic nanomedicinal utilization for synergistic drug delivery application in cancer nanotechnology,” J. Mol. Struct., vol. 1312, p. 138388, Sep. 2024, doi: 10.1016/j.molstruc.2024.138388.

N. Desai, V. Chavda, T. R. R. Singh, N. D. Thorat, and L. K. Vora, “Cancer Nanovaccines: Nanomaterials and Clinical Perspectives,” Small, vol. 20, no. 35, p. 2401631, Aug. 2024, doi: 10.1002/smll.202401631.

N. Parvin, V. Kumar, T. K. Mandal, and S. W. Joo, “Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics,” J. Funct. Biomater., vol. 15, no. 8, p. 226, Aug. 2024, doi: 10.3390/jfb15080226.

B. Tawiah, E. A. Ofori, and S. C. George, “Nanotechnology in Societal Development,” in Nanotechnology in Societal Development, S. C. George and B. Tawiah, Eds., in Advanced Technologies and Societal Change. , Singapore: Springer Nature Singapore, 2024, pp. 1–64. doi: 10.1007/978-981-97-6184-5_1.

A. N. Al-Thani, A. G. Jan, M. Abbas, M. Geetha, and K. K. Sadasivuni, “Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review,” Life Sci., vol. 352, p. 122899, Sep. 2024, doi: 10.1016/j.lfs.2024.122899.

B. Govindan, M. A. Sabri, A. Hai, F. Banat, and M. A. Haija, “A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach,” Pharmaceutics, vol. 15, no. 3, p. 868, Mar. 2023, doi: 10.3390/pharmaceutics15030868.

J. B. Oehler, W. Rajapaksha, and H. Albrecht, “Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer,” J. Pers. Med., vol. 14, no. 7, p. 723, Jul. 2024, doi: 10.3390/jpm14070723.

Chrysoula Kokotidou, Sara H. Mejías, and Evangelos Georgilis, “Protein- and Peptide-Inorganic Nanoparticles as Theranostic Vehicles,” in Functional Materials in Biomedical Applications, 1st ed., 2023, p. 61.

M. T. Yassin, F. O. Al-Otibi, S. A. Al-Sahli, M. S. El-Wetidy, and S. Mohamed, “Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities,” Cancers, vol. 16, no. 24, p. 4234, Dec. 2024, doi: 10.3390/cancers16244234.

M. Bhange and D. Telange, “Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review,” Discov. Oncol., vol. 16, no. 1, p. 77, Jan. 2025, doi: 10.1007/s12672-025-01821-y.

S. Raikwar et al., “Opportunities in combinational chemo-immunotherapy for breast cancer using nanotechnology: an emerging landscape,” Expert Opin. Drug Deliv., vol. 19, no. 3, pp. 247–268, Mar. 2022, doi: 10.1080/17425247.2022.2044785.

P. Singh et al., “Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications,” Adv. Healthc. Mater., vol. 14, no. 4, p. 2403059, Feb. 2025, doi: 10.1002/adhm.202403059.

D. Xie, L. Sun, M. Wu, and Q. Li, “From detection to elimination: iron-based nanomaterials driving tumor imaging and advanced therapies,” Front. Oncol., vol. 15, p. 1536779, Feb. 2025, doi: 10.3389/fonc.2025.1536779.

M. Xie et al., “Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery,” Int. J. Nanomedicine, vol. Volume 19, pp. 8437–8461, Aug. 2024, doi: 10.2147/IJN.S477652.

Downloads

Published

04-03-2025

Issue

Section

Research Articles

How to Cite

[1]
Soumitra Mandal, “Advancing Breast Cancer Therapy with Iron Oxide Nanoparticles”, Int J Sci Res Sci Eng Technol, vol. 12, no. 2, pp. 08–26, Mar. 2025, doi: 10.32628/IJSRSET25122103.

Similar Articles

1-10 of 39

You may also start an advanced similarity search for this article.