Smart Farming Revolution: AI, IoT, and Robotics in Precision Agriculture and Soil Conservation
DOI:
https://doi.org/10.32628/IJSRSET25122193Keywords:
Smart Farming, Artificial Intelligence (AI), Internet of Things (IoT), Agricultural Robotics, Smart Irrigation Systems, 5G ConnectivityAbstract
Advances in artificial intelligence (AI), the internet of things (IoT), and robotics are reshaping how precision agriculture is practiced and how soil resources are preserved. The technologies allow for decision-making based on data, resource optimization, and environmentally friendly farming. AI allows for sophisticated predictive analysis, which means farmers can predict yield results, detect diseases in advance, and maximize planting timetables. IoT-based sensor networks enable real-time soil health monitoring, weather patterns, and crop development, enabling more efficient and timely farm operations. Robotics transforms conventional farm work by bringing autonomous platforms to seeding, harvesting, and soil testing, lowering labor costs and improving operational effectiveness. By better management of water, reduced land erosion, and reduced wastage of fertiliser, the use of such intelligent technologies not only enhances the productivity of agriculture but also ensures the conservation of soil. Robotic automation, IoT-based monitoring systems, and AI-based analytics play an important role in enhancing agricultural productivity and environmental sustainability, which is emphasized in the discussion of existing trends in intelligent agriculture in this paper.
Downloads
References
A. A. AlZubi and K. Galyna, “Artificial Intelligence and Internet of Things for Sustainable Farming and Smart Agriculture,” IEEE Access, vol. 11, pp. 78686–78692, 2023, doi: 10.1109/ACCESS.2023.3298215.
M. Padhiary, A. Hoque, G. Prasad, K. Kumar, and B. Sahu, “Precision Agriculture and AI-Driven Resource Optimization for Sustainable Land and Resource Management:,” in Smart Water Technology for Sustainable Management in Modern Cities, J. A. Ruiz-Vanoye and O. Díaz-Parra, Eds., IGI Global, 2025, pp. 197–232. doi: 10.4018/979-8-3693-8074-1.ch009.
S. Getahun, H. Kefale, and Y. Gelaye, “Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review,” Sci. World J., vol. 2024, no. 1, p. 2126734, Jan. 2024, doi: 10.1155/2024/2126734.
M. Padhiary and R. Kumar, “Assessing the Environmental Impacts of Agriculture, Industrial Operations, and Mining on Agro-Ecosystems,” in Smart Internet of Things for Environment and Healthcare, vol. 1165, M. Azrour, J. Mabrouki, A. Alabdulatif, A. Guezzaz, and F. Amounas, Eds., in Studies in Computational Intelligence, vol. 1165. , Cham: Springer Nature Switzerland, 2024, pp. 107–126. doi: 10.1007/978-3-031-70102-3_8.
S. Barathkumar, K. M. Sellamuthu, K. Sathyabama, P. Malathi, R. Kumaraperumal, and P. Devagi, “Advancements in Soil Quality Assessment: A Comprehensive Review of Machine Learning and AI-Driven Approaches for Nutrient Deficiency Analysis,” Commun. Soil Sci. Plant Anal., vol. 56, no. 2, pp. 251–276, Jan. 2025, doi: 10.1080/00103624.2024.2406484.
A. A. Laskar, “Exploring the Role of Smart Systems in Farm Machinery for Soil Fertility and Crop Productivity,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 12, pp. 2063–2075, Dec. 2024, doi: 10.22214/ijraset.2024.66157.
M. Padhiary, P. Saikia, P. Roy, N. Hussain, and K. Kumar, “A Review on Advancing Agricultural Efficiency through Geographic Information Systems, Remote Sensing, and Automated Systems,” Cureus J. Eng., Mar. 2025, doi: 10.7759/s44388-024-00559-7.
M. Bampasidou, D. Goldgaber, T. Gentimis, and A. Mandalika, “Overcoming ‘Digital Divides’: Leveraging higher education to develop next generation digital agriculture professionals,” Comput. Electron. Agric., vol. 224, p. 109181, Sep. 2024, doi: 10.1016/j.compag.2024.109181.
M. T. Linaza et al., “Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture,” Agronomy, vol. 11, no. 6, p. 1227, Jun. 2021, doi: 10.3390/agronomy11061227.
J. Debnath, K. Kumar, K. Roy, R. D. Choudhury, and A. K. P. U, “Precision Agriculture: A Review of AI Vision and Machine Learning in Soil, Water, and Conservation Practice,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 12, pp. 2130–2141, Dec. 2024, doi: 10.22214/ijraset.2024.66166.
M. Padhiary, P. Roy, P. Dey, and B. Sahu, “Harnessing AI for Automated Decision-Making in Farm Machinery and Operations: Optimizing Agriculture,” in Advances in Computational Intelligence and Robotics, S. Hai-Jew, Ed., IGI Global, 2024, pp. 249–282. doi: 10.4018/979-8-3693-6230-3.ch008.
T. Domingues, T. Brandão, and J. C. Ferreira, “Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey,” Agriculture, vol. 12, no. 9, p. 1350, Sep. 2022, doi: 10.3390/agriculture12091350.
H. M. Abdullah et al., “Present and future scopes and challenges of plant pest and disease (P&D) monitoring: Remote sensing, image processing, and artificial intelligence perspectives,” Remote Sens. Appl. Soc. Environ., vol. 32, p. 100996, Nov. 2023, doi: 10.1016/j.rsase.2023.100996.
Y. Akkem, S. K. Biswas, and A. Varanasi, “Smart farming using artificial intelligence: A review,” Eng. Appl. Artif. Intell., vol. 120, p. 105899, Apr. 2023, doi: 10.1016/j.engappai.2023.105899.
S. A. Nahiyoon et al., “Recent Development Trends in Plant Protection UAVs: A Journey from Conventional Practices to Cutting-Edge Technologies—A Comprehensive Review,” Drones, vol. 8, no. 9, p. 457, Sep. 2024, doi: 10.3390/drones8090457.
N. S. Chandel et al., “State-of-the-art AI-enabled mobile device for real-time water stress detection of field crops,” Eng. Appl. Artif. Intell., vol. 131, p. 107863, May 2024, doi: 10.1016/j.engappai.2024.107863.
N. Y. Murad, T. Mahmood, A. R. M. Forkan, A. Morshed, P. P. Jayaraman, and M. S. Siddiqui, “Weed Detection Using Deep Learning: A Systematic Literature Review,” Sensors, vol. 23, no. 7, p. 3670, Mar. 2023, doi: 10.3390/s23073670.
M. Padhiary, S. Powar, A. Asokan, M. Sundar Rajan, K. Al-Said, and N. Al Said, “Combining Convolutional Neural Networks with Reinforcement Learning for Autonomous Robotics,” in 2025 International Conference on Pervasive Computational Technologies (ICPCT), Greater Noida, India: IEEE, Feb. 2025, pp. 421–425. doi: 10.1109/ICPCT64145.2025.10940484.
Z. H. Kok, A. R. Mohamed Shariff, M. S. M. Alfatni, and S. Khairunniza-Bejo, “Support Vector Machine in Precision Agriculture: A review,” Comput. Electron. Agric., vol. 191, p. 106546, Dec. 2021, doi: 10.1016/j.compag.2021.106546.
H. Burdett and C. Wellen, “Statistical and machine learning methods for crop yield prediction in the context of precision agriculture,” Precis. Agric., vol. 23, no. 5, pp. 1553–1574, Oct. 2022, doi: 10.1007/s11119-022-09897-0.
O. Ennaji, L. Vergütz, and A. El Allali, “Machine learning in nutrient management: A review,” Artif. Intell. Agric., vol. 9, pp. 1–11, Sep. 2023, doi: 10.1016/j.aiia.2023.06.001.
M. E. Akiner and M. Ghasri, “Comparative assessment of deep belief network and hybrid adaptive neuro-fuzzy inference system model based on a meta-heuristic optimization algorithm for precise predictions of the potential evapotranspiration,” Environ. Sci. Pollut. Res., vol. 31, no. 30, pp. 42719–42749, Jun. 2024, doi: 10.1007/s11356-024-33987-3.
I. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications,” Information, vol. 15, no. 9, p. 517, Aug. 2024, doi: 10.3390/info15090517.
M. Sabuhi, M. Zhou, C.-P. Bezemer, and P. Musilek, “Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review,” IEEE Access, vol. 9, pp. 161003–161029, 2021, doi: 10.1109/ACCESS.2021.3131949.
A. Yousaf, V. Kayvanfar, A. Mazzoni, and A. Elomri, “Artificial intelligence-based decision support systems in smart agriculture: Bibliometric analysis for operational insights and future directions,” Front. Sustain. Food Syst., vol. 6, p. 1053921, Jan. 2023, doi: 10.3389/fsufs.2022.1053921.
M. Padhiary, “The Convergence of Deep Learning, IoT, Sensors, and Farm Machinery in Agriculture:,” in Designing Sustainable Internet of Things Solutions for Smart Industries, S. G. Thandekkattu and N. R. Vajjhala, Eds., IGI Global, 2024, pp. 109–142. doi: 10.4018/979-8-3693-5498-8.ch005.
S. Adinarayana, M. G. Raju, D. P. Srirangam, D. S. Prasad, M. R. Kumar, and S. B. Veesam, “Enhancing Resource Management in Precision Farming through AI‐Based Irrigation Optimization,” in How Machine Learning is Innovating Today’s World, 1st ed., A. Dey, S. Nayak, R. Kumar, and S. N. Mohanty, Eds., Wiley, 2024, pp. 221–251. doi: 10.1002/9781394214167.ch15.
B. Das, A. Hoque, S. Roy, K. Kumar, A. A. Laskar, and A. S. Mazumder, “Post-Harvest Technologies and Automation: Al-Driven Innovations in Food Processing and Supply Chains,” Int. J. Sci. Res. Sci. Technol., vol. 12, no. 1, pp. 183–205, Jan. 2025, doi: 10.32628/ijsrst25121170.
M. Padhiary, A. K. Kyndiah, R. Kumara, and D. Saha, “Exploration of electrode materials for in-situ soil fertilizer concentration measurement by electrochemical method,” Int. J. Adv. Biochem. Res., vol. 8, no. 4, pp. 539–544, Jan. 2024, doi: 10.33545/26174693.2024.v8.i4g.1011.
Uche Nweje and Moyosore Taiwo, “Leveraging Artificial Intelligence for predictive supply chain management, focus on how AI- driven tools are revolutionizing demand forecasting and inventory optimization,” Int. J. Sci. Res. Arch., vol. 14, no. 1, pp. 230–250, Jan. 2025, doi: 10.30574/ijsra.2025.14.1.0027.
M. Padhiary, K. Kumar, N. Hussain, D. Roy, J. A. Barbhuiya, and P. Roy, “Artificial Intelligence in Farm Management: Integrating Smart Systems for Optimal Agricultural Practices,” Int. J. Smart Agric., vol. 3, no. 1, pp. 1–11, Feb. 2025, doi: 10.54536/ijsa.v3i1.3674.
Md. N. Mowla, N. Mowla, A. F. M. S. Shah, K. M. Rabie, and T. Shongwe, “Internet of Things and Wireless Sensor Networks for Smart Agriculture Applications: A Survey,” IEEE Access, vol. 11, pp. 145813–145852, 2023, doi: 10.1109/ACCESS.2023.3346299.
M. Padhiary and R. Kumar, “Enhancing Agriculture Through AI Vision and Machine Learning: The Evolution of Smart Farming,” in Advances in Computational Intelligence and Robotics, D. Thangam, Ed., IGI Global, 2024, pp. 295–324. doi: 10.4018/979-8-3693-5380-6.ch012.
M. Rajabzadeh and H. Fatorachian, “Modelling Factors Influencing IoT Adoption: With a Focus on Agricultural Logistics Operations,” Smart Cities, vol. 6, no. 6, pp. 3266–3296, Nov. 2023, doi: 10.3390/smartcities6060145.
E. Bwambale, F. K. Abagale, and G. K. Anornu, “Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review,” Agric. Water Manag., vol. 260, p. 107324, Feb. 2022, doi: 10.1016/j.agwat.2021.107324.
P. Saikia, B. Sahu, G. Prasad, S. Kumar, S. Suman, and K. Kumar, “Smart Infrastructure Systems: A Review of IoT-Enabled Monitoring and Automation in Civil and Agricultural Engineering,” Asian J. Res. Comput. Sci., vol. 18, no. 4, pp. 24–44, Mar. 2025, doi: 10.9734/ajrcos/2025/v18i4606.
S. Kumari and A. K. Tyagi, “Wireless Sensor Networks: An Introduction,” in Digital Twin and Blockchain for Smart Cities, 1st ed., A. K. Tyagi, Ed., Wiley, 2024, pp. 495–528. doi: 10.1002/9781394303564.ch21.
B. Kashyap and R. Kumar, “Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring,” IEEE Access, vol. 9, pp. 14095–14121, 2021, doi: 10.1109/ACCESS.2021.3052478.
E. S. Hassan, A. A. Alharbi, A. S. Oshaba, and A. El-Emary, “Enhancing Smart Irrigation Efficiency: A New WSN-Based Localization Method for Water Conservation,” Water, vol. 16, no. 5, p. 672, Feb. 2024, doi: 10.3390/w16050672.
A. Morchid, R. Jebabra, H. M. Khalid, R. El Alami, H. Qjidaa, and M. Ouazzani Jamil, “IoT-based smart irrigation management system to enhance agricultural water security using embedded systems, telemetry data, and cloud computing,” Results Eng., vol. 23, p. 102829, Sep. 2024, doi: 10.1016/j.rineng.2024.102829.
H. W. Gammanpila, M. A. N. Sashika, and S. V. G. N. Priyadarshani, “Advancing Horticultural Crop Loss Reduction Through Robotic and AI Technologies: Innovations, Applications, and Practical Implications,” Adv. Agric., vol. 2024, no. 1, p. 2472111, Jan. 2024, doi: 10.1155/2024/2472111.
A. Hoque, M. Padhiary, G. Prasad, and K. Kumar, “Real-Time Data Processing in Agricultural Robotics:,” in Computer Vision Techniques for Agricultural Advancements, D. J. Bora and R. K. Bania, Eds., IGI Global, 2025, pp. 431–468. doi: 10.4018/979-8-3693-8019-2.ch014.
K. Sharma and S. K. Shivandu, “Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture,” Sens. Int., vol. 5, p. 100292, 2024, doi: 10.1016/j.sintl.2024.100292.
G. Rabha, K. Kumar, D. Kumar, and D. Kumar, “A Comprehensive Review of Integrating AI and IoT in Farm Machinery: Advancements, Applications, and Sustainability,” Int. J. Res. Anal. Rev., vol. 11, no. 4, 2024.
R. R. De Melo, “Electrical-Powered Agricultural Machinery,” in Encyclopedia of Digital Agricultural Technologies, Q. Zhang, Ed., Cham: Springer International Publishing, 2023, pp. 447–460. doi: 10.1007/978-3-031-24861-0_230.
M. Padhiary and P. Roy, “Advancements in Precision Agriculture: Exploring the Role of 3D Printing in Designing All-Terrain Vehicles for Farming Applications,” Int. J. Sci. Res. IJSR, vol. 13, no. 5, pp. 861–868, May 2024, doi: 10.21275/SR24511105508.
M. Padhiary, R. Kumar, and L. N. Sethi, “Navigating the Future of Agriculture: A Comprehensive Review of Automatic All-Terrain Vehicles in Precision Farming,” J. Inst. Eng. India Ser. A, vol. 105, no. 3, pp. 767–782, Sep. 2024, doi: 10.1007/s40030-024-00816-2.
G. Kootstra, X. Wang, P. M. Blok, J. Hemming, and E. Van Henten, “Selective Harvesting Robotics: Current Research, Trends, and Future Directions,” Curr. Robot. Rep., vol. 2, no. 1, pp. 95–104, Mar. 2021, doi: 10.1007/s43154-020-00034-1.
S. Ghatrehsamani et al., “Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review,” Sustainability, vol. 15, no. 3, p. 1843, Jan. 2023, doi: 10.3390/su15031843.
S. O. Owoeye, F. Durodola, A. B. Bode-Okunade, A. B. Alkali, and C. T. Okonkwo, “Development of an unmanned ground vehicle for seed planting,” IAES Int. J. Robot. Autom. IJRA, vol. 13, no. 2, p. 168, Jun. 2024, doi: 10.11591/ijra.v13i2.pp168-179.
D. Saha, M. Padhiary, J. A. Barbhuiya, T. Chakrabarty, and L. N. Sethi, “Development of an IOT based Solenoid Controlled Pressure Regulation System for Precision Sprayer,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 7, pp. 2210–2216, Jul. 2023, doi: 10.22214/ijraset.2023.55103.
N. Gupta and P. K. Gupta, “Robotics and Artificial Intelligence (AI) in Agriculture with Major Emphasis on Food Crops,” in Digital Agriculture, P. M. Priyadarshan, S. M. Jain, S. Penna, and J. M. Al-Khayri, Eds., Cham: Springer International Publishing, 2024, pp. 577–605. doi: 10.1007/978-3-031-43548-5_19.
W. Zhang, Z. Miao, N. Li, C. He, and T. Sun, “Review of Current Robotic Approaches for Precision Weed Management,” Curr. Robot. Rep., vol. 3, no. 3, pp. 139–151, Jul. 2022, doi: 10.1007/s43154-022-00086-5.
M. Vahdanjoo, R. Gislum, and C. A. G. Sørensen, “Operational, Economic, and Environmental Assessment of an Agricultural Robot in Seeding and Weeding Operations,” AgriEngineering, vol. 5, no. 1, pp. 299–324, Feb. 2023, doi: 10.3390/agriengineering5010020.
K. Ye, G. Hu, Z. Tong, Y. Xu, and J. Zheng, “Key Intelligent Pesticide Prescription Spraying Technologies for the Control of Pests, Diseases, and Weeds: A Review,” Agriculture, vol. 15, no. 1, p. 81, Jan. 2025, doi: 10.3390/agriculture15010081.
J. Krupanek et al., “Environmental performance of an autonomous laser weeding robot—a case study,” Int. J. Life Cycle Assess., vol. 29, no. 6, pp. 1021–1052, Jun. 2024, doi: 10.1007/s11367-024-02295-w.
E. Bacelar et al., “Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality,” Plants, vol. 13, no. 14, p. 1942, Jul. 2024, doi: 10.3390/plants13141942.
K. V. KoteswaraRao, G. Naga Srinivasulu, J. Ramesh Rahul, and V. Velisala, “Optimal component sizing and performance of Fuel Cell – Battery powered vehicle over world harmonized and new european driving cycles,” Energy Convers. Manag., vol. 300, p. 117992, Jan. 2024, doi: 10.1016/j.enconman.2023.117992.
W. Jiang, L. Quan, G. Wei, C. Chang, and T. Geng, “A conceptual evaluation of a weed control method with post-damage application of herbicides: A composite intelligent intra-row weeding robot,” Soil Tillage Res., vol. 234, p. 105837, Oct. 2023, doi: 10.1016/j.still.2023.105837.
J. Jiao, Y. Zang, and C. Chen, “Key Technologies of Intelligent Weeding for Vegetables: A Review,” Agriculture, vol. 14, no. 8, p. 1378, Aug. 2024, doi: 10.3390/agriculture14081378.
M. Pradel, M. De Fays, and C. Seguineau, “Comparative Life Cycle Assessment of intra-row and inter-row weeding practices using autonomous robot systems in French vineyards,” Sci. Total Environ., vol. 838, p. 156441, Sep. 2022, doi: 10.1016/j.scitotenv.2022.156441.
A. Addas, M. Tahir, and N. Ismat, “Enhancing Precision of Crop Farming towards Smart Cities: An Application of Artificial Intelligence,” Sustainability, vol. 16, no. 1, p. 355, Dec. 2023, doi: 10.3390/su16010355.
F. Hu et al., “Transforming Agriculture with Advanced Robotic Decision Systems via Deep Recurrent Learning,” Expert Syst. Appl., vol. 259, p. 125123, Jan. 2025, doi: 10.1016/j.eswa.2024.125123.
L. Manning, “Innovating in an Uncertain World: Understanding the Social, Technical and Systemic Barriers to Farmers Adopting New Technologies,” Challenges, vol. 15, no. 2, p. 32, Jun. 2024, doi: 10.3390/challe15020032.
C. B. Barrett, “Overcoming Global Food Security Challenges through Science and Solidarity,” Am. J. Agric. Econ., vol. 103, no. 2, pp. 422–447, Mar. 2021, doi: 10.1111/ajae.12160.
M. Padhiary and P. Roy, “Collaborative Marketing Strategies in Agriculture for Global Reach and Local Impact:,” in Emerging Trends in Food and Agribusiness Marketing, S. C. Pant, V. G. Venkatesh, P. Panday, G. P. Shukla, and S. Parhi, Eds., IGI Global, 2024, pp. 219–252. doi: 10.4018/979-8-3693-6715-5.ch008.
A. Ghobadpour, G. Monsalve, A. Cardenas, and H. Mousazadeh, “Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities,” Vehicles, vol. 4, no. 3, pp. 843–864, Aug. 2022, doi: 10.3390/vehicles4030047.
E. M. Emeana, L. Trenchard, and K. Dehnen-Schmutz, “The Revolution of Mobile Phone-Enabled Services for Agricultural Development (m-Agri Services) in Africa: The Challenges for Sustainability,” Sustainability, vol. 12, no. 2, p. 485, Jan. 2020, doi: 10.3390/su12020485.
M. Gupta, M. Abdelsalam, S. Khorsandroo, and S. Mittal, “Security and Privacy in Smart Farming: Challenges and Opportunities,” IEEE Access, vol. 8, pp. 34564–34584, 2020, doi: 10.1109/ACCESS.2020.2975142.
K. Demestichas, N. Peppes, and T. Alexakis, “Survey on Security Threats in Agricultural IoT and Smart Farming,” Sensors, vol. 20, no. 22, p. 6458, Nov. 2020, doi: 10.3390/s20226458.
M. Ayamga, S. Akaba, and A. A. Nyaaba, “Multifaceted applicability of drones: A review,” Technol. Forecast. Soc. Change, vol. 167, p. 120677, Jun. 2021, doi: 10.1016/j.techfore.2021.120677.
D. Rajababu, S. Surya, M. Padhiary, and H. Modi, “Blockchain for Cybersecurity_ Securing Data Transactions and Enhancing Privacy in Digital Systems,” in 2025 First International Conference on Advances in Computer Science, Electrical, Electronics, and Communication Technologies (CE2CT), Bhimtal, Nainital, India: IEEE, Feb. 2025, pp. 1426–1430. doi: 10.1109/CE2CT64011.2025.10939863.
K. S. L. Kazi, “AI-Powered IoT (AI IoT) for Decision-Making in Smart Agriculture: KSK Approach for Smart Agriculture,” in Advances in Computational Intelligence and Robotics, S. Hai-Jew, Ed., IGI Global, 2024, pp. 67–96. doi: 10.4018/979-8-3693-6230-3.ch003.
M. Junaid et al., “Smart Agriculture Cloud Using AI Based Techniques,” Energies, vol. 14, no. 16, p. 5129, Aug. 2021, doi: 10.3390/en14165129.
B. Kariyanna and M. Sowjanya, “Unravelling the use of artificial intelligence in management of insect pests,” Smart Agric. Technol., vol. 8, p. 100517, Aug. 2024, doi: 10.1016/j.atech.2024.100517.
M. Padhiary, S. V. Tikute, D. Saha, J. A. Barbhuiya, and L. N. Sethi, “Development of an IOT-Based Semi-Autonomous Vehicle Sprayer,” Agric. Res., vol. 14, no. 1, pp. 229–239, Mar. 2025, doi: 10.1007/s40003-024-00760-4.
A. Upadhyay, A. Patel, A. Patel, N. S. Chandel, S. K. Chakraborty, and D. G. Bhalekar, “Leveraging AI and ML in Precision Farming for Pest and Disease Management: Benefits, Challenges, and Future Prospects,” in Ecologically Mediated Development, vol. 41, H. S. Jatav, V. D. Raiput, and T. Minkina, Eds., in Sustainable Development and Biodiversity, vol. 41. , Singapore: Springer Nature Singapore, 2025, pp. 511–528. doi: 10.1007/978-981-96-2413-3_23.
B. Kashyap and R. Kumar, “Sensing Methodologies in Agriculture for Monitoring Biotic Stress in Plants Due to Pathogens and Pests,” Inventions, vol. 6, no. 2, p. 29, Apr. 2021, doi: 10.3390/inventions6020029.
P. Roy, D. Kumar, and K. Kumar, “Harnessing AI and Emerging Technologies for Sustainable Food Systems: Innovations in Automation and Intelligent Production,” Asian J. Res. Comput. Sci., vol. 18, no. 4, pp. 115–135, Mar. 2025, doi: 10.9734/ajrcos/2025/v18i4611.
R. Azenzem and H. Eddomairi, “Internet of Things (IoT) and Artificial Intelligence (AI) in Agriculture: Applications for Sustainable Crop Protection,” in Food and Industry 5.0: Transforming the Food System for a Sustainable Future, P. K. Dutta, A. Hamad, A. K. Haghi, and P. K. Prabhakar, Eds., in Sustainable Development Goals Series. , Cham: Springer Nature Switzerland, 2025, pp. 73–86. doi: 10.1007/978-3-031-76758-6_6.
C. Maraveas, “Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art,” Appl. Sci., vol. 13, no. 1, p. 14, Dec. 2022, doi: 10.3390/app13010014.
A. Hoque, “Transformative Approaches to Agricultural Sustainability: Automation, Smart Greenhouses, and AI,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 13, no. 1, pp. 1011–1023, Jan. 2025, doi: 10.22214/ijraset.2025.66494.
M. Padhiary, “Status of Farm Automation, Advances, Trends, and Scope in India,” Int. J. Sci. Res. IJSR, vol. 13, no. 7, pp. 737–745, Jul. 2024, doi: 10.21275/SR24713184513.
K. Javan and M. Darestani, “Assessing environmental sustainability of a vital crop in a critical region: Investigating climate change impacts on agriculture using the SWAT model and HWA method,” Heliyon, vol. 10, no. 3, p. e25326, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25326.
A. Kaur, D. P. Bhatt, and L. Raja, “Developing a Hybrid Irrigation System for Smart Agriculture Using IoT Sensors and Machine Learning in Sri Ganganagar, Rajasthan,” J. Sens., vol. 2024, pp. 1–15, Jan. 2024, doi: 10.1155/2024/6676907.
E. A. Abioye et al., “A review on monitoring and advanced control strategies for precision irrigation,” Comput. Electron. Agric., vol. 173, p. 105441, Jun. 2020, doi: 10.1016/j.compag.2020.105441.
X. Zhu, “Review of Intelligent Sprinkler Irrigation Technologies for Autonomous and Remote Sensing System,” in Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies, vol. 3, in Smart Agriculture, vol. 3. , Singapore: Springer Nature Singapore, 2023, pp. 125–140. doi: 10.1007/978-981-19-8319-1_7.
I. A. Lakhiar et al., “A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints,” Agriculture, vol. 14, no. 7, p. 1141, Jul. 2024, doi: 10.3390/agriculture14071141.
R. Verbiest, K. Ruysen, T. Vanwalleghem, E. Demeester, and K. Kellens, “Automation and robotics in the cultivation of pome fruit: Where do we stand today?,” J. Field Robot., vol. 38, no. 4, pp. 513–531, Jun. 2021, doi: 10.1002/rob.22000.
J. F. Elfferich, D. Dodou, and C. D. Santina, “Soft Robotic Grippers for Crop Handling or Harvesting: A Review,” IEEE Access, vol. 10, pp. 75428–75443, 2022, doi: 10.1109/ACCESS.2022.3190863.
X.-B. Jin, T.-L. Su, J.-L. Kong, Y.-T. Bai, B.-B. Miao, and C. Dou, “State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence,” Appl. Sci., vol. 8, no. 3, p. 379, Mar. 2018, doi: 10.3390/app8030379.
E. Vrochidou, V. N. Tsakalidou, I. Kalathas, T. Gkrimpizis, T. Pachidis, and V. G. Kaburlasos, “An Overview of End Effectors in Agricultural Robotic Harvesting Systems,” Agriculture, vol. 12, no. 8, p. 1240, Aug. 2022, doi: 10.3390/agriculture12081240.
S. R. Raja, B. Subashini, and R. S. Prabu, “5G Technology in Smart Farming and Its Applications,” in Intelligent Robots and Drones for Precision Agriculture, S. Balasubramanian, G. Natarajan, and P. R. Chelliah, Eds., in Signals and Communication Technology. , Cham: Springer Nature Switzerland, 2024, pp. 241–264. doi: 10.1007/978-3-031-51195-0_12.
S. Roy, A. Hoque, P. Saikia, and M. Padhiary, “Climate-Smart Agriculture: AI-Based Solutions for Enhancing Crop Resilience and Reducing Environmental Impact,” Asian Res. J. Agric., vol. 18, no. 1, pp. 291–310, Mar. 2025, doi: 10.9734/arja/2025/v18i1665.
G. S. Mmbando, “Harnessing artificial intelligence and remote sensing in climate-smart agriculture: the current strategies needed for enhancing global food security,” Cogent Food Agric., vol. 11, no. 1, p. 2454354, Dec. 2025, doi: 10.1080/23311932.2025.2454354.
S. Ragaveena, A. Shirly Edward, and U. Surendran, “Smart controlled environment agriculture methods: a holistic review,” Rev. Environ. Sci. Biotechnol., vol. 20, no. 4, pp. 887–913, Dec. 2021, doi: 10.1007/s11157-021-09591-z.
M. Padhiary, G. Prasad, A. Hoque, K. Kumar, and B. Sahu, “Advances in Vertical Farming: The Role of Artificial Intelligence and Automation in Sustainable Agriculture,” LatIA, vol. 3, p. 131, Mar. 2025, doi: 10.62486/latia2025131.
F. Shah and W. Wu, “Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments,” Sustainability, vol. 11, no. 5, p. 1485, Mar. 2019, doi: 10.3390/su11051485.
M. Padhiary, P. Roy, and D. Roy, “The Future of Urban Connectivity: AI and IoT in Smart Cities,” in Advances in Electronic Government, Digital Divide, and Regional Development, S. N. S. Al-Humairi, A. I. Hajamydeen, and A. Mahfoudh, Eds., IGI Global, 2024, pp. 33–66. doi: 10.4018/979-8-3693-6740-7.ch002.
E. Koutridi and O. Christopoulou, ““The importance of integrating Smart Farming Technologies into Rural Policies (Aiming at sustainable rural development)- Stakeholders’ views”,” Smart Agric. Technol., vol. 4, p. 100206, Aug. 2023, doi: 10.1016/j.atech.2023.100206.
D. Kumar, K. Kumar, P. Roy, and G. Rabha, “Renewable Energy in Agriculture: Enhancing Aquaculture and Post-Harvest Technologies with Solar and AI Integration,” Asian J. Res. Comput. Sci., vol. 17, no. 12, pp. 201–219, Dec. 2024, doi: 10.9734/ajrcos/2024/v17i12539.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.