A Wearable Wisdom: ABI-Modal Behavioral Biometric Scheme for Smartwatch User Authentication
DOI:
https://doi.org/10.32628/IJSRSET2512316Abstract
This work utilizes wearable devices for real-time stress detection and investigates the effectiveness of meditation audio in reducing stress levels after academic exposure. Physiological data, including Interbeat Interval (IBI)-derived Heart Rate Variability (HRV), Blood Volume Pulse(BVP),andelectrodermalactivity(EDA),arecollectedduringthe Montreal Imaging Stress Task (MIST). The stress classification methodology employs an integrated approach using Genetic Algorithm andMutualInformationtoreducefeaturesetredundancy.Itfurtheruses Bayesian optimization to fine-tune machine learning hyperparameters. The results indicate that the combination of EDA, BVP, and HRV achievesthehighestclassificationaccuracyof98.28%and97.02%using the Gradient Boosting (GB) algorithm for 2-level and 3-level stress classification. In contrast, EDA and HRV alone achieve a comparable accuracy of 97.07% and 95.23% for 2-level and 3-level stress classification, respectively. Furthermore, the SHAP Explainable AI (XAI) analysis confirms that HRV and EDA are the most significant features for stress classification. The study also finds evidence that listening to meditation audio reduces stress levels. These findings highlight the potential of wearable technology combined with machine learning for real-time stress monitoring and management in academic environments.
Downloads
References
P. S. Prabu, ‘‘A study on academic stress among higher secondary students,’’ Internationaljournalofhumanitiesandsocialscienceinvention,vol.4,no.10,pp.63–68, 2015.
S.D.Ghatol,AcademicStressamongSchoolStudents.AlliedPublishers,2019.
A. Waqas, S. Khan, W. Sharif, U. Khalid, and A. Ali, ‘‘Association of academic stresswithsleepingdifficulties inmedicalstudentsofaPakistanimedicalschool:across sectional survey,’’ PeerJ, vol. 3, p. e840, 2015.
V.M.Bhujade,‘‘Depression,anxietyandacademicstressamongcollegestudents:A brief review.,’’ Indian Journal of Health & Wellbeing, vol. 8, no. 7, 2017.
S.Maji,A.Chaturmohta,D.Deevela,S.Sinha,S.Tarsolia,andA.Barsaiya,‘‘Mental health consequences of academic stress, amotivation, and coaching experience: A study of india’s top engineering undergraduates,’’ Psychology in the Schools.
S.Byun,A.Y.Kim,E.H.Jang,S.Kim,K. W.Choi,H.Y.Yu,andH.J.Jeon, ‘‘Detectionofmajordepressivedisorderfromlinearandnonlinearheartratevariability featuresduringmentaltaskprotocol,’’Computersinbiologyand medicine,vol.112,p. 103381, 2019.
M.Jafari,A.Shoeibi,M.Khodatars,S.Bagherzadeh,A.Shalbaf,D.L.García,J.M. Gorriz, and U. R. Acharya, ‘‘Emotion recognition inEEG signals usingdeep learning methods: A review,’’ Computers in Biology and Medicine, p. 107450, 2023.
L.Holtz,M.Martinez,K.Paton,K.Rosich,andE.Schnittka,‘‘Effectsof physiological stress response on short-term memory recall,’’ 2017. C. Anders and B. Arnrich, ‘‘Wearable electroencephalography and multimodal mentalstateclassification:Asystematicliteraturereview,’’ComputersinBiologyand Medicine, p. 106088, 2022
A.ArsalanandM.Majid,‘‘Humanstressclassificationduringpublicspeakingusing physiological signals,’’ Computers in biology and medicine, vol. 133, p. 104377, 2021.
M.Ullah,S.Akbar,A.Raza,andQ.Zou,‘‘DeepAVP-TPPred:identificationofantiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm,’’ Bioinformatics, vol. 40, no. 5, p. btae305, 2024.
S.Akbar,Q.Zou,A.Raza,andF.K.Alarfaj,‘‘iAFPs-Mv-BiTCN:Predictingantifungal peptidesusingself-attentiontransformerembeddingandtransformevolutionarybased multi- view features with bidirectional temporal convolutional networks,’’ Artificial Intelligence in Medicine, vol. 151, p. 102860, 2024.
Saqib, M., Malhotra, S., Mehta, D., Jangid, J., Yashu, F., & Dixit, S. (2025). Optimizing spot instance reliability and security using cloud-native data and tools. Journal of Information Systems Engineering and Management, 10(14s), 720–731. https://doi.org/10.52783/jisem.v10i14s.2387
S.Akbar,A.Raza,andQ.Zou,‘‘Deepstacked-AVPs:predictingantiviralpeptidesusing tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model,’’ BMC bioinformatics, vol. 25, no. 1, p. 102, 2024.
A. Raza, J. Uddin, A. Almuhaimeed, S. Akbar, Q. Zou, and A. Ahmad, ‘‘AIPs-SnTCN: Predictinganti-inflammatorypeptidesusingfasttextandtransformerencoder-basedhybridword embedding with self-normalized temporal convolutional networks,’’ Journal of chemical information and modeling, vol. 63, no. 21, pp. 6537–6554, 2023.
S.Akbar,A.Raza,T.AlShloul,A.Ahmad,A.Saeed,Y.Y.Ghadi,O.Mamyrbayev,and E.T.Eldin,‘‘pAtbP-EnC:identifyinganti-tubercularpeptidesusingmulti-featurerepresentation and genetic algorithm based deep ensemble model,’’ IEEE Access, 2023.
A.Kumar,K.Sharma,andA.Sharma,‘‘Hierarchicaldeepneuralnetworkformentalstress state detection using IoT based biomarkers,’’ Pattern Recognition Letters, vol. 145, pp. 81–87, 2021.
Y. S. Can, N. Chalabianloo, D. Ekiz, and C. Ersoy, ‘‘Continuous stress detection using wearablesensorsinreallife:Algorithmicprogrammingcontestcasestudy,’’Sensors,vol.19, no. 8, p. 1849, 2019. B. Egilmez, E. Poyraz, W. Zhou, G. Memik, P. Dinda, and N. Alshurafa, ‘‘UStress: Understanding college student subjective stress using wristbased passive sensing,’’ in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 673–678, IEEE, 2017
Dixit, S., & Jangid, J. (2025). Exploring smart contracts and artificial intelligence in FinTech. Journal of Information Systems Engineering and Management, 10(14s), 282–295. https://doi.org/10.52783/jisem.v10i14s.2208
K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, ‘‘The MontrealImaging Stress Task: using functional imaging to investigate the effects ofperceiving and processingpsychosocialstressinthehumanbrain,’’JournalofPsychiatryandNeuroscience, vol.30, no. 5, pp. 319–325, 2005.
Y.Zhang,Q.Wang,Z.Y.Chin,andK.K.Ang,‘‘Investigatingdifferentstress-reliefmethodsusing electroencephalogram(EEG),’’ in2020 42nd AnnualInternationalConference ofthe IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2999–3002, IEEE, 2020.
F.Al-Shargie,‘‘Prefrontalcortexfunctionalconnectivitybasedonsimultaneousrecordofelectrical and hemodynamic responses associated with mental stress,’’ arXiv preprint arXiv:2103.04636, 2021.
J.Minguillon,E.Perez,M.A.Lopez-Gordo,F.Pelayo,andM.J.SanchezCarrion, ‘‘Portable system for real-time detection of stress level,’’ Sensors,vol. 18, no. 8, p. 2504, 2018.
L.Xia,A.S.Malik,andA.R.Subhani,‘‘Aphysiologicalsignal-based methodforearlymental- stress detection,’’ Biomedical Signal Processing and Control, vol. 46, pp. 18–32, 2018.
C. Setz,B. Arnrich, J. Schumm, R. La Marca, G.Tröster, and U.Ehlert, ‘‘Discriminating stress fromcognitiveloadusingawearableEDAdevice,’’IEEETransactionsoninformationtechnologyin biomedicine, vol. 14, no. 2, pp. 410–417, 2009.
L.Han, Q.Zhang,X.Chen,Q.Zhan,T.Yang,andZ.Zhao,‘‘Detectingwork-relatedstresswitha wearable device,’’ Computers in Industry, vol. 90, pp. 42–49, 2017.
M.Gjoreski,M.Luštrek,M.Gams,andH.Gjoreski,‘‘Monitoringstresswithawrist deviceusing context,’’ Journal of biomedical informatics, vol. 73, pp. 159–170, 2017.
Jangid, J. (2025). Secure microservice communication in optical networks. Journal of Information Systems Engineering and Management, 10(21s), 911–926. https://doi.org/10.52783/jisem.v10i21s.3455
L. Zhu, P. Spachos, P. C. Ng, Y. Yu, Y. Wang, K. Plataniotis, and D. Hatzinakos, ‘‘Stress DetectionThroughWrist-BasedElectrodermalActivityMonitoringandMachineLearning,’’IEEE Journal of Biomedical and Health Informatics, 2023.
C.-P.Hsieh,Y.-T.Chen,W.-K.Beh,andA.-Y.A.Wu,‘‘Featureselectionframeworkforxgboost based on electrodermal activity in stress detection,’’ in 2019 IEEE International Workshop on Signal Processing Systems (SiPS), pp. 330–335, IEEE, 2019. P.Siirtola,‘‘Continuousstressdetectionusingthesensorsofcommercialsmartwatch,’’inAdjunct Proceedingsofthe 2019 ACMInternationalJoint Conference onPervasive and UbiquitousComputing and Proceedings ofthe 2019 ACM InternationalSymposiumonWearable Computers, pp. 1198–1201, 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.