Synthesis, Spectral Characterization and Antimicrobial Evaluation of Schiff Base Derived From 1-Hydroxy-4-iodo-2-acetonaphthone and 4-Methoxyphenylethylamine
DOI:
https://doi.org/10.32628/IJSRSET2512333Keywords:
Schiff base, 1-Hydroxy-4-iodo-2-acetonaphthone, 4-Methoxyphenylethylamine, antimicrobialAbstract
Here, we are presented the new Schiff base's synthesis, characterization, and biological properties. The following methods have been used to identify these compounds: FT-IR, 1H and 13C NMR, LCMS, and UV-visible. More than 400 nm peaks in UV-vis. spectra are confirmed, indicating the presence of n→π* and π→π* transitions of non-bonding electrons. The IR measurements confirmed the involvement of azomethine nitrogen and naphthol oxygen in the ligand's bidentate binding. The predicted structures and the Schiff base 1H, 13C NMR spectrum data agreed fairly well. The approved Schiff base ligand was tested for in vitro antibacterial bioactivity against the gram-negative bacteria E. coli, P. aeruginosa, and gram-positive S. aureus, B. subtilis, as well as in vitro antifungal activity against the two fungi C. albicans and A. niger using the agar well diffusion technique. The Schiff base-1-Hydroxy-4-iodo-2-acetonaphthone, which contains halogen, demonstrated moderate to considerable antibacterial activity, suggesting that it could be a suitable lead structure for the creation of novel antimicrobial drugs.
📊 Article Downloads
References
Khorshidifard M.; Rudbari H.A.; Kazemi-Delikani Z.; Mirkhani V.; Azadbakht R. Synthesis, characterization and X-ray crystal structures of Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes derived from an asymmetric bidentate Schiff-base ligand at ambient temperature, J. Mol. Str., 2014, 1081, 494-505. doi: http://dx.doi.org/10.1016/j.molstruc.2014.10.071 DOI: https://doi.org/10.1016/j.molstruc.2014.10.071
Dholakiya P. P.; Patel M. N. Preparation, Characterization, and Antimicrobial Activities of Some Mixed‐Ligand Complexes of Mn(II), Co(II), Ni(II), Cu(II), and Cd(II) with Monobasic Bidentate (ON) Schiff Base and Neutral Bidentate (NN) Ligands. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2004, 34, 383-395. http://dx.doi.org/10.1081/SIM-120028308 DOI: https://doi.org/10.1081/SIM-120028308
Ourari A.; Khelafi M.; Aggoun D.; Bouet G.; Khan M. A. Synthesis, Characterization, and Electrochemical Study of Tetradentate Ruthenium-Schiff Base Complexes: Dioxygen Activation with a Cytochrome P450 Model Using 1- or 2-Methylimidazole as Axial Bases. Adv. Phy. Chem., 2011, 2011, 1-11. https://doi.org/10.1155/2011/157484 DOI: https://doi.org/10.1155/2011/157484
Messasma Z.; Ourari A.; Mahdadi R.; Houchi S.; Aggoun D.; Kherbache A.; Bentouhami E. Synthesis, spectral characterization, DFT computational studies and inhibitory activity of novel N2S2 tetradentates Schiff bases on metallo-beta-lactamases of Acinetobacter baumannii. J. Mol. Str., 2018, 1171, 672-681. https://doi.org/10.1016/j.molstruc.2018.06.044 DOI: https://doi.org/10.1016/j.molstruc.2018.06.044
Daniel V. P.; Murukan B.; Kumari B. S.; Mohanan K. Synthesis, spectroscopic characterization, electrochemical behaviour, reactivity and antibacterial activity of some transition metal complexes with 2-(N-salicylideneamino)-3-carboxyethyl-4,5-dimethylthiophene. Spectrochim. Acta-A: Mol. Biomol. Spectrosc., 2008, 70, 403–410. https://doi.org/10.1016/j.saa.2007.11.003 DOI: https://doi.org/10.1016/j.saa.2007.11.003
Koinkar] K. N. One Pot Synthesis and Antimicrobial Evaluation of Schiff Base 1,2,4- Triazole Derivatives. International Journal of Scientific Research in Science and Technology, 2025, 12, 211-215. https://doi.org/10.32628/IJSRST DOI: https://doi.org/10.32628/IJSRST
Bhati S. Structure-based drug designing of naphthalene based SARS-CoV PLpro inhibitors for the treatment of COVID-19. Heliyon, 2020, 6, e05558. https://doi.org/10.1016/j.heliyon.2020.e05558 DOI: https://doi.org/10.1016/j.heliyon.2020.e05558
Maher K. Schiff Bases Derived from 2-Hydroxynaphthalene-1-carbaldehyde and their Metal Complexes. Asian J. Chem.; 2018, 30, 1171-1182. https://doi.org/10.14233/ajchem.2018.21286 DOI: https://doi.org/10.14233/ajchem.2018.21286
Pandey P.; Verma A.; Bretosh K.; Sutter J.P.; Sunkari S. S. Template directed synthesis of half condensed Schiff base complexes of Cu(II) and Co(III): Structural and magnetic studie. Polyhedron, 2019,164, 80–89. https://doi.org/10.1016/j.poly.2019.02.037 DOI: https://doi.org/10.1016/j.poly.2019.02.037
Lashanizadegan M.; Ashari H. A.; Sarkheil M.; Anafcheh M.; Jahangiry S. New Cu(II), Co(II) and Ni(II) azo-Schiff base complexes: Synthesis, characterization, catalytic oxidation of alkenes and DFT study. Polyhedron, 2021, 200, 115148. https://doi.org/10.1016/j.poly.2021.115148 DOI: https://doi.org/10.1016/j.poly.2021.115148
Freitas V. L. S.; Ribeiro da Silva M. D. M. C. Structural and Energetic Insights on Two Dye Compounds: 1-Acetyl-2-Naphthol and 2-Acetyl-1-Naphthol. Molecules, 2020, 25, 3827. http://dx.doi.org/10.3390/molecules25173827 DOI: https://doi.org/10.3390/molecules25173827
Vhanale B.; Kadam D.; Shinde A. Synthesis, spectral studies, antioxidant and antibacterial evaluation of aromatic nitro and halogenated tetradentate Schiff bases. Heliyon, 2022, 8, e09650. https://doi.org/10.1016/j.heliyon.2022.e09650 DOI: https://doi.org/10.1016/j.heliyon.2022.e09650
da Silva C. M.; da Silva D. L.; Modolo L. V.; Alves R. B.; de Resende M. A.; Martins C. V.B.; de Fa´tima A. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2, 1–8. http://dx.doi.org/10.1016/j.jare.2010.05.004
More M. S.; Joshi P. G.; Mishra Y. K.; Khanna P. K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater. Today Chem., 2019, 14, 100195. https://doi.org/10.1016/j.mtchem.2019.100195
Vhanale B. T.; Shinde A. T. Synthesis, characterization and biological relevance of Ni(II) and Fe(III) complexes of the halogenated 2,2′ ((pentane 1,3 diylbis(azanylylide ne))bis(ethan 1 yl 1 ylidene))bis(naphthalen 1 ol) Schiff base ligand. 2022, 19, 2641- 2653. https://doi.org/10.1007/s13738-021-02486-4 DOI: https://doi.org/10.1007/s13738-021-02486-4
Lee J. M.; Shin S. Y.; Yoon H.; Lee M. S.; Lee Y. R.; Koh D.; Le Y. H. Synthesis and Biological Evaluation of a Novel Pyrazolecarbothioamide Derivative (DK115) Inducing Cell Cycle Arrest at the G1 Phase in HCT116 Human Colon Cancer Cells. J. Korean Soc. Appl. Biol. Chem., 2013, 56, 343−347. https://doi.org/10.1007/s13765-013-3065-1 DOI: https://doi.org/10.1007/s13765-013-3065-1
Ibrahim S. R. M.; Mohamed G. A. Naturally occurring naphthalenes: chemistry, biosynthesis, structural elucidation, and biological activities. Phytochem Rev ., 2016, 15, 279–295. https://doi.org/10.1007/s11101-015-9413-5 DOI: https://doi.org/10.1007/s11101-015-9413-5
Skrodzki M.; Patroniak V.; Pawluc P. Schiff Base Cobalt(II) Complex-Catalyzed Highly Markovnikov-Selective Hydrosilylation of Alkynes. Org. Lett., 2021, 23, 663−667. https://dx.doi.org/10.1021/acs.orglett.0c03721 DOI: https://doi.org/10.1021/acs.orglett.0c03721
Kuchtanin V.; Klešcˇíková L.; Šoral M.; Fischer R.; Ru˚ zˇicˇková Z.; Rakovsky´ E.; Moncol’ J.; Segl’ P. Nickel(II) Schiff base complexes: Synthesis, characterization and catalytic activity in Kumada–Corriu cross-coupling reactions. Polyhedron, 2016, 117, 90–96. http://dx.doi.org/10.1016/j.poly.2016.05.037 DOI: https://doi.org/10.1016/j.poly.2016.05.037
Gutiérrez K. J.; Pedreira W. M.; Piñero Cruz D. M. Synthesis, structural, electrochemical and spectroscopic characterization, and theoretical calculations of two new Cu(II) and Ni(II) complexes from 2-(1-((pyridine-2- ylmethyl)imino)ethyl)naphtalen-1-ol, J. Coord. Chem., 2019, 72, 2654-2668. https://doi.org/10.1080/00958972.2019.1670348 DOI: https://doi.org/10.1080/00958972.2019.1670348
Abdel-Rahman L. H.; Abu-Dief A. M.; El-Khatib R. M.; Abdel-Fatah S. M. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem., 2016, 69, 140–152. http://dx.doi.org/10.1016/j.bioorg.2016.10.009 DOI: https://doi.org/10.1016/j.bioorg.2016.10.009
Kumar A.; Agarwal M.; Singh A. K. Schiff bases of 1-hydroxy-2-acetonaphthone containing chalcogen functionalities and their complexes with and (p-cymene)Ru(II), Pd(II), Pt(II) and Hg(II): Synthesis, structures and applications in C–C coupling reactions. J. Organomet. Chem., 2008, 693, 3533–3545. https://doi.org/10.1016/j.jorganchem.2008.07.024 DOI: https://doi.org/10.1016/j.jorganchem.2008.07.024
Chaves S.; Pérez Redondo A.; Quevedo R. Solid State Structure and Intermolecular Interactions of two N Benzylidenephenylethylamines. J. Chem. Crystallogr., 2020, 50, 206- 211. https://doi.org/10.1007/s10870-019-00792-7 DOI: https://doi.org/10.1007/s10870-019-00792-7
Kargar H.; Behjatmanesh-Ardakani R.; Torabi V.; Sarvian A.; Kazemi Z.; Chavoshpour-Natanzi Z.; Mirkhani V.; Sahraei A.; Tahir M. N.; Ashfaq M. Novel copper(II) and zinc(II) complexes of halogenated bidentate N,O-donor Schiff base ligands: Synthesis, characterization, crystal structures, DNA binding, molecular docking, DFT and TD-DFT computational studies, Inorg. Chim. Acta, 2020, 514, 120004. https://doi.org/10.1016/j.ica.2020.120004 DOI: https://doi.org/10.1016/j.ica.2020.120004
da Silva C.M.; da Silva D.L.; Modolo L.V.; Alves R.B.; de Resende M.A.; Martins C.V.B.; de Fa´tima A. Schiff bases: A short review of their antimicrobial activities, J. Adv. Res., 2011, 2, 1-8. https://doi.org/10.1016/j.jare.2010.05.004 DOI: https://doi.org/10.1016/j.jare.2010.05.004
More M.S.; Joshi P.G.; Mishra Y.K.; Khanna P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review, Mater. Today Chem., 2019, 14, 100195. https://doi.org/10.1016/j.mtchem.2019.100195 DOI: https://doi.org/10.1016/j.mtchem.2019.100195
Bouzerafa B.; Ourari A.; Aggoun D.; Ruiz-Rosas R.; Ouennoughi Y.; Morallon E. Novel nickel(II) and manganese(III) complexes with bidentate Schiff-base ligand: synthesis, spectral, thermogravimetry, electrochemical and electrocatalytical propertiesRes. Chem. Intermed., 2016, 42, 4839–4858. https://doi.org/10.1007/s11164-015-2325-6 DOI: https://doi.org/10.1007/s11164-015-2325-6
Shinde A. T.; Zangade S. B., Chavan S. B.; Vibhute A. Y.; Nalwar Y. S.; Vibhute Y. B. A Practical Iodination of Aromatic Compounds by Using Iodine and Iodic Acid, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 2010, 40, 3506-3513. http://dx.doi.org/10.1080/00397910903457332 DOI: https://doi.org/10.1080/00397910903457332
Bergman J.; Yasar S.; Winger G. Psychomotor stimulant effects of β-phenylethylamine in monkeys treated with MAO-B inhibitors Psychopharmacology, 2001, 159, 21–30. https://doi.org/10.1007/s002130100890 DOI: https://doi.org/10.1007/s002130100890
Ardakani A.A.; Kargar H.; Feizi N.; Tahir M.N. Synthesis, characterization, crystal structures and antibacterial activities of some Schif bases with N2O2 donor setsJ. Iran. Chem. Soc., 2018, 15, 1495–1504. https://doi.org/10.1007/s13738-018-1347-6 DOI: https://doi.org/10.1007/s13738-018-1347-6
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.