On Fixed Point Theorems in Dislocated Quasi Metric Spaces

Authors

  • Nilesh R. More Department of Mathematics, Jijamata College of Art’s, Commerce and Science, Nandurbar - 425412, Maharashtra, India Author
  • Sadashiv G. Dapke Department of Mathematics, Iqra’s H. J. Thim College of Arts and Science, Jalgaon- 425001, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRSET2512414

Keywords:

Fixed point theorem, Dislocated quasi-metric space, Fixed point theory

Abstract

The aim of this paper is to establish new fixed point results for certain classes of mappings in the setting of dislocated quasi-metric (dq-metric) spaces by utilizing the concept of orbits around a point. The study focuses on relaxing the conventional completeness assumptions and instead applies orbital completeness, which provides a broader and more flexible framework for analysis. We extend and generalize existing fixed point theorems by considering various contractive conditions under orbital continuity. These generalizations contribute to the ongoing development of fixed point theory in non-symmetric spaces, such as dq-metric spaces, where the standard tools of metric space theory are not directly applicable. The results presented in this paper unify and improve previously known results and offer new insights into the structure of dislocated spaces. This work not only enhances the theoretical understanding of fixed points in generalized settings but also lays the groundwork for further applications in mathematical analysis and related disciplines.

📊 Article Downloads

References

A. H. Alwan, On fixed points in orbit in dislocated quasi-metric spaces, AIP Conference Proceedings, 2386(2022), 060007. DOI: https://doi.org/10.1063/5.0067438

B. E. Rhoades, A comparison of various definitions of contraction mappings, Trans. Amer. Math. Soc., 226(1997), pp. 257-289. DOI: https://doi.org/10.2307/1997954

C. T. Aage and J. N. Salunke, The results on fixed points in dislocated and dislocated quasi-metric space, Applied Mathematical Sciences, Vol.2(2008), No. 59, pp. 2941-2948.

D. W. Boyd and J. S. W. Wong, Nonlinear contractions, Proceedings of the American Mathematical society, Vol.20(1969), no.2, pp. 458-464. DOI: https://doi.org/10.2307/2035677

F. M. Zeyada, G. H. Hassan and M. A. Ahmed, A generalization of fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, The Arabian Journal for Science and Engineering, Vol.31(2005), pp. 111-114.

L. B. Ciric, “A generalization of Banach’s contraction principle”, Proceedings of the American Mathematical Society, Vol. 45(1974), Issue. 2, pp. 267-273. DOI: https://doi.org/10.1090/S0002-9939-1974-0356011-2

M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962)7, 4-79. DOI: https://doi.org/10.1112/jlms/s1-37.1.74

P. Hitzler and A. K. Seda, Dislocated Topologies, J. Electr. Engin., 51(12/s)(2000), pp.3-7.

R. M. T. Bianchini, Su un problema di s. Reich riguardante la teoria dei punti fissi, Boll. Un.Mat. Ital. 5(1972), 103-108.

S. Banach, Surles operations dansies ensembles abstraits et leur application aux quations integrales. Fund.Math., (1922); 3:133-181. DOI: https://doi.org/10.4064/fm-3-1-133-181

S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital. (4) 4 (1971), 1 -11. DOI: https://doi.org/10.21275/v4i11.NOV151003

V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc.(2)5(1972), 95-96. DOI: https://doi.org/10.1112/jlms/s2-5.3.571

Downloads

Published

20-07-2025

Issue

Section

Research Articles

How to Cite

[1]
Nilesh R. More and Sadashiv G. Dapke, “On Fixed Point Theorems in Dislocated Quasi Metric Spaces”, Int J Sci Res Sci Eng Technol, vol. 12, no. 4, pp. 185–189, Jul. 2025, doi: 10.32628/IJSRSET2512414.