Spectroscopical Investigation of Human Grown Urinary Calculi in and Around Puducherry Region

Authors

  • Vijayaprasath R Department of Physics, ManakulaVinayagar Institute of Technology, Puducherry, 605 107, India Author
  • Selvaraju R Engineering Physics, Faculty of Engineering and Technology, Annamalai University, Annamalainagar, 608 002, India Author
  • Renuka Devi K.B Department of Physics, Rajiv Gandhi College of Engineering and Technology, Puducherry, 605 108, India Author

DOI:

https://doi.org/10.32628/IJSRSET2512505

Keywords:

Urolithiasis, Calcium oxalate, Uric acid, FT-IR, SEM

Abstract

Urinary calculi taken from patients in the Southern Indian area of Pondicherry are spectroscopically analysed in this study. The chemical content, molecular structure and categorization of 20 urinary stone samples are ascertained by the use of complementary Ultraviolet – Visible (UV-Vis) and Fourier Transformer – Infrared (FTIR) spectroscopy methods. FT-IR analysis confirmed the presence of specific functional groups associated with Calcium oxalate, Calcium phosphate, Uric acid, Struvite and mixed composition. UV spectroscopy revealed distinctive absorption patterns between 200-400nm providing initial identification of stone type. According to the results the majority of the people under study had calcium oxalate (62%) followed by the uric acid (19%), calcium phosphate (11%), struvite (6%) and mixed composition (2%). A quick, accurate and non-destructive analytical tool for the clinical diagnosis and epidemiological evaluation of urolithiasis in the area is provided by this dual Spectroscopical technology. The Scanning Electron Microscopy (SEM) analysis shows the morphology of the collected samples. The result offer important information for creating treatment plans and targeted prevention measures tailored to the urolithiasis patterns seen in the Pondicherry community.

📊 Article Downloads

References

Selvaraju, R., Raja, A., & Thiruppathi, G. (2013). Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 650-657. DOI: https://doi.org/10.1016/j.saa.2013.05.029

Selvaraju, R., Raja, A., & Thiruppathi, G. (2012). FT-Raman spectral analysis of human urinary stones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, 205-210. DOI: https://doi.org/10.1016/j.saa.2012.09.004

Sunitha, J., Thironavukkaras, P., & Ash, S. (2018). A retrospective study on prevalence and risk factors associated with kidney stone in Vellore district, Tamil Nadn. Int. J. Pharm. Sci. Rev. Res, 48(1), 54-57.

Dongre, A. R., Rajalakshmi, M., Deshmukh, P. R., Thirunavukarasu, M. R., & Kumar, R. (2017). Risk Factors for Kidney Stones in Rural Puducherry: Case-Control Study. Journal of clinical and diagnostic research : JCDR, 11(9), LC01–LC05. DOI: https://doi.org/10.7860/JCDR/2017/29465.10561

Wang, X., Zhang, J., Ma, Z., Yang, Y., Dang, Y., Cao, S., ... & Hu, X. (2023). Association and interactions between mixed exposure to trace elements and the prevalence of kidney stones: a study of NHANES 2017–2018. Frontiers in Public Health, 11, 1251637. DOI: https://doi.org/10.3389/fpubh.2023.1251637

Selvaraju, R., & Bhuvaneswari, M. (2020). Growth and Spectral Investigation on Pure Calcium Phosphate Doped With (Copper and Magnesium) Crystals. DOI: https://doi.org/10.32628/IJSRSET207558

Vasuki, G., & Selvaraju, R. (2014). Growth and characterization of uric acid crystals. International Journal of Science and Research, 3(8), 696-699.

Selvaraju, R., & Sivasakthi, A. Spectral and Dissolution Studies on Pure Struvite with Nickel-Doped Struvite Crystals.

Hughes, T., Tzelves, L., & Somani, B. K. (2023). Cystine stones: developments in minimally invasive surgery and their impact on Morbidity and Stone Clearance. Research and Reports in Urology, 175-185. DOI: https://doi.org/10.2147/RRU.S381190

Singh, V. K., & Rai, P. K. (2014). Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: A review. Biophysical Reviews, 6, 291–310. DOI: https://doi.org/10.1007/s12551-014-0144-4

Rimer, J. D., Kolbach-Mandel, A. M., Ward, M. D., & Wesson, J. A. (2017). The role of macromolecules in the formation of kidney stones. Urolithiasis, 45(1), 57-74. DOI: https://doi.org/10.1007/s00240-016-0948-8

Manissorn, J., Fong-Ngern, K., Peerapen, P., & Thongboonkerd, V. (2017). Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Scientific reports, 7(1), 1798. DOI: https://doi.org/10.1038/s41598-017-01953-4

Wregg, C., Rosenlechner, D., Zach, V., Eigenfeld, M., Stabentheiner, E., Ahyai, S., & Schwaminger, S. P. (2024). FT-IR Spectroscopy Analysis of Kidney Stone Variability in Styria. Crystals, 14(10), 854. DOI: https://doi.org/10.3390/cryst14100854

Basiri, A., Tahvildari, A., Naji, M., Ziaeefar, P., & Kashi, A. H. (2025). Determination of the kidney stone composition using infrared spectroscopy in Iran at a national referral center during 2019–2023. Asian Journal of Urology, 12(1), 72-78.

Zhang, J., Li, K., Chen, H., Hu, X., Guo, Z., Chen, S., ... & Chen, P. (2023). Retrospective analysis of urinary tract stone composition in a Chinese ethnic minority colony based on Fourier transform infrared spectroscopy. Scientific Reports, 13(1), 13453.

Maruyama, M., Sawada, K. P., Tanaka, Y., Okada, A., Momma, K., Nakamura, M., ... & Mori, Y. (2023). Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones. PLoS One, 18(3), e0282743.

H. Valido, I., Resina‐Gallego, M., Yousef, I., Luque‐Gálvez, M. P., Valiente, M., & López‐Mesas, M. (2020). Calcium oxalate kidney stones, where is the organic matter?: A synchrotron based infrared microspectroscopy study. Journal of Biophotonics, 13(12), e202000303. DOI: https://doi.org/10.1002/jbio.202000303

Maruyama, M., Sawada, K. P., Tanaka, Y., Okada, A., Momma, K., Nakamura, M., ... & Mori, Y. (2023). Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones. PLoS One, 18(3), e0282743. DOI: https://doi.org/10.1371/journal.pone.0282743

Durdağı, S. E. V. İ. L. (2024). Urinary Stone Composition Analyses Using Fourier Transform Infrared (FTIR) Spectrometry. Journal of Urology and Renal Diseases, 9(04). DOI: https://doi.org/10.29011/2575-7903.001380

Gadzhiev, N., Gelig, V., Rodionov, G., Gauhar, V., & Zeng, G. (2025). Metabolic Differences in 24-Hour Urine Parameters Between Calcium Oxalate Monohydrate and Dihydrate Kidney Stones: A Clinical Study. Diagnostics, 15(8), 994. DOI: https://doi.org/10.3390/diagnostics15080994

Werner, H., Bapat, S., Schobesberger, M., Segets, D., & Schwaminger, S. P. (2021). Calcium oxalate crystallization: Influence of pH, energy input, and supersaturation ratio on the synthesis of artificial kidney stones. ACS omega, 6(40), 26566-26574. DOI: https://doi.org/10.1021/acsomega.1c03938

Xu, S., Liu, Z. L., Zhang, T. W., Li, B., Wang, X. N., & Jiao, W. (2024). Self-control study of multi-omics in identification of microenvironment characteristics in urine of uric acid stone. Scientific Reports, 14(1), 25165. DOI: https://doi.org/10.1038/s41598-024-76054-0

Basiri, A., Tahvildari, A., Naji, M., Ziaeefar, P., & Kashi, A. H. (2025). Determination of the kidney stone composition using infrared spectroscopy in Iran at a national referral center during 2019–2023. Asian Journal of Urology, 12(1), 72-78. DOI: https://doi.org/10.1016/j.ajur.2024.07.004

Zhang, J., Li, K., Chen, H., Hu, X., Guo, Z., Chen, S., ... & Chen, P. (2023). Retrospective analysis of urinary tract stone composition in a Chinese ethnic minority colony based on Fourier transform infrared spectroscopy. Scientific Reports, 13(1), 13453. DOI: https://doi.org/10.1038/s41598-023-40603-w

Acharya, A., Khanal, M., Maharjan, R., Gyawali, K., Khanal, K., Kshetri, M. B., ... & Lamichhane, H. P. (2024). Experimental FTIR characterization of kidney stones, DFT analysis of CaC2O4 and its interactions with lysozyme. BIBECHANA, 21(3), 311-320. DOI: https://doi.org/10.3126/bibechana.v21i3.68781

Tseregorodtseva, P. S., Budylin, G. S., Zlobina, N. V., Gevorkyan, Z. A., Filatova, D. A., Tsigura, D. A., ... & Shirshin, E. A. (2023, December). Multiwavelength Fluorescence and Diffuse Reflectance Spectroscopy for an In Situ Analysis of Kidney Stones. In Photonics (Vol. 10, No. 12, p. 1353). MDPI. DOI: https://doi.org/10.3390/photonics10121353

Boichenko, E., Paronnikov, M., & Kirsanov, D. (2023). Pilot Study on the Qualitative Analysis of Urinary Stones Using Near-Infrared Spectroscopy and Chemometrics. Engineering Proceedings, 48(1), 64. DOI: https://doi.org/10.3390/CSAC2023-15162

Ozono, C., Hirasawa, I. and Kohori, F. (2017), Shape Change and Growth Behavior of Monosodium Urate Monohydrate in a Gout Model. Chem. Eng. Technol., 40: 1231 1234. 0. DOI: https://doi.org/10.1002/ceat.201600680

Norazmi, N., Rasad, Z. A., Mohamad, M., & Manap, H. (2017), Uric acid detection using UV-Vis spectrometer. IOP Conf. Ser.: Mater. Sci. Eng 257(1), 012031. DOI: https://doi.org/10.1088/1757-899X/257/1/012031

Khalil, A. A. I., Gondal, M. A., Shemis, M., & Khan, I. S. (2015). Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy. Applied optics, 54(8), 2123-2131. DOI: https://doi.org/10.1364/AO.54.002123

Tsung-Jui Lin., Kai-Ting Yen., Chien-Fan Chen., Shuo-Ting Yan., Kuan-Wei Su., & Ya-Ling Chiang, Label-Free Uric Acid Estimation of Spot Urine Using Portable Device Based on UV Spectrophotometry, (2022), Sensors, 22, 3009. DOI: https://doi.org/10.3390/s22083009

Downloads

Published

15-07-2025

Issue

Section

Research Articles

How to Cite

[1]
Vijayaprasath R, Selvaraju R, and Renuka Devi K.B, “Spectroscopical Investigation of Human Grown Urinary Calculi in and Around Puducherry Region”, Int J Sci Res Sci Eng Technol, vol. 12, no. 4, pp. 84–97, Jul. 2025, doi: 10.32628/IJSRSET2512505.