Spectroscopical Investigation of Human Grown Urinary Calculi in and Around Puducherry Region
DOI:
https://doi.org/10.32628/IJSRSET2512505Keywords:
Urolithiasis, Calcium oxalate, Uric acid, FT-IR, SEMAbstract
Urinary calculi taken from patients in the Southern Indian area of Pondicherry are spectroscopically analysed in this study. The chemical content, molecular structure and categorization of 20 urinary stone samples are ascertained by the use of complementary Ultraviolet – Visible (UV-Vis) and Fourier Transformer – Infrared (FTIR) spectroscopy methods. FT-IR analysis confirmed the presence of specific functional groups associated with Calcium oxalate, Calcium phosphate, Uric acid, Struvite and mixed composition. UV spectroscopy revealed distinctive absorption patterns between 200-400nm providing initial identification of stone type. According to the results the majority of the people under study had calcium oxalate (62%) followed by the uric acid (19%), calcium phosphate (11%), struvite (6%) and mixed composition (2%). A quick, accurate and non-destructive analytical tool for the clinical diagnosis and epidemiological evaluation of urolithiasis in the area is provided by this dual Spectroscopical technology. The Scanning Electron Microscopy (SEM) analysis shows the morphology of the collected samples. The result offer important information for creating treatment plans and targeted prevention measures tailored to the urolithiasis patterns seen in the Pondicherry community.
📊 Article Downloads
References
Selvaraju, R., Raja, A., & Thiruppathi, G. (2013). Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 650-657. DOI: https://doi.org/10.1016/j.saa.2013.05.029
Selvaraju, R., Raja, A., & Thiruppathi, G. (2012). FT-Raman spectral analysis of human urinary stones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, 205-210. DOI: https://doi.org/10.1016/j.saa.2012.09.004
Sunitha, J., Thironavukkaras, P., & Ash, S. (2018). A retrospective study on prevalence and risk factors associated with kidney stone in Vellore district, Tamil Nadn. Int. J. Pharm. Sci. Rev. Res, 48(1), 54-57.
Dongre, A. R., Rajalakshmi, M., Deshmukh, P. R., Thirunavukarasu, M. R., & Kumar, R. (2017). Risk Factors for Kidney Stones in Rural Puducherry: Case-Control Study. Journal of clinical and diagnostic research : JCDR, 11(9), LC01–LC05. DOI: https://doi.org/10.7860/JCDR/2017/29465.10561
Wang, X., Zhang, J., Ma, Z., Yang, Y., Dang, Y., Cao, S., ... & Hu, X. (2023). Association and interactions between mixed exposure to trace elements and the prevalence of kidney stones: a study of NHANES 2017–2018. Frontiers in Public Health, 11, 1251637. DOI: https://doi.org/10.3389/fpubh.2023.1251637
Selvaraju, R., & Bhuvaneswari, M. (2020). Growth and Spectral Investigation on Pure Calcium Phosphate Doped With (Copper and Magnesium) Crystals. DOI: https://doi.org/10.32628/IJSRSET207558
Vasuki, G., & Selvaraju, R. (2014). Growth and characterization of uric acid crystals. International Journal of Science and Research, 3(8), 696-699.
Selvaraju, R., & Sivasakthi, A. Spectral and Dissolution Studies on Pure Struvite with Nickel-Doped Struvite Crystals.
Hughes, T., Tzelves, L., & Somani, B. K. (2023). Cystine stones: developments in minimally invasive surgery and their impact on Morbidity and Stone Clearance. Research and Reports in Urology, 175-185. DOI: https://doi.org/10.2147/RRU.S381190
Singh, V. K., & Rai, P. K. (2014). Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: A review. Biophysical Reviews, 6, 291–310. DOI: https://doi.org/10.1007/s12551-014-0144-4
Rimer, J. D., Kolbach-Mandel, A. M., Ward, M. D., & Wesson, J. A. (2017). The role of macromolecules in the formation of kidney stones. Urolithiasis, 45(1), 57-74. DOI: https://doi.org/10.1007/s00240-016-0948-8
Manissorn, J., Fong-Ngern, K., Peerapen, P., & Thongboonkerd, V. (2017). Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Scientific reports, 7(1), 1798. DOI: https://doi.org/10.1038/s41598-017-01953-4
Wregg, C., Rosenlechner, D., Zach, V., Eigenfeld, M., Stabentheiner, E., Ahyai, S., & Schwaminger, S. P. (2024). FT-IR Spectroscopy Analysis of Kidney Stone Variability in Styria. Crystals, 14(10), 854. DOI: https://doi.org/10.3390/cryst14100854
Basiri, A., Tahvildari, A., Naji, M., Ziaeefar, P., & Kashi, A. H. (2025). Determination of the kidney stone composition using infrared spectroscopy in Iran at a national referral center during 2019–2023. Asian Journal of Urology, 12(1), 72-78.
Zhang, J., Li, K., Chen, H., Hu, X., Guo, Z., Chen, S., ... & Chen, P. (2023). Retrospective analysis of urinary tract stone composition in a Chinese ethnic minority colony based on Fourier transform infrared spectroscopy. Scientific Reports, 13(1), 13453.
Maruyama, M., Sawada, K. P., Tanaka, Y., Okada, A., Momma, K., Nakamura, M., ... & Mori, Y. (2023). Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones. PLoS One, 18(3), e0282743.
H. Valido, I., Resina‐Gallego, M., Yousef, I., Luque‐Gálvez, M. P., Valiente, M., & López‐Mesas, M. (2020). Calcium oxalate kidney stones, where is the organic matter?: A synchrotron based infrared microspectroscopy study. Journal of Biophotonics, 13(12), e202000303. DOI: https://doi.org/10.1002/jbio.202000303
Maruyama, M., Sawada, K. P., Tanaka, Y., Okada, A., Momma, K., Nakamura, M., ... & Mori, Y. (2023). Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones. PLoS One, 18(3), e0282743. DOI: https://doi.org/10.1371/journal.pone.0282743
Durdağı, S. E. V. İ. L. (2024). Urinary Stone Composition Analyses Using Fourier Transform Infrared (FTIR) Spectrometry. Journal of Urology and Renal Diseases, 9(04). DOI: https://doi.org/10.29011/2575-7903.001380
Gadzhiev, N., Gelig, V., Rodionov, G., Gauhar, V., & Zeng, G. (2025). Metabolic Differences in 24-Hour Urine Parameters Between Calcium Oxalate Monohydrate and Dihydrate Kidney Stones: A Clinical Study. Diagnostics, 15(8), 994. DOI: https://doi.org/10.3390/diagnostics15080994
Werner, H., Bapat, S., Schobesberger, M., Segets, D., & Schwaminger, S. P. (2021). Calcium oxalate crystallization: Influence of pH, energy input, and supersaturation ratio on the synthesis of artificial kidney stones. ACS omega, 6(40), 26566-26574. DOI: https://doi.org/10.1021/acsomega.1c03938
Xu, S., Liu, Z. L., Zhang, T. W., Li, B., Wang, X. N., & Jiao, W. (2024). Self-control study of multi-omics in identification of microenvironment characteristics in urine of uric acid stone. Scientific Reports, 14(1), 25165. DOI: https://doi.org/10.1038/s41598-024-76054-0
Basiri, A., Tahvildari, A., Naji, M., Ziaeefar, P., & Kashi, A. H. (2025). Determination of the kidney stone composition using infrared spectroscopy in Iran at a national referral center during 2019–2023. Asian Journal of Urology, 12(1), 72-78. DOI: https://doi.org/10.1016/j.ajur.2024.07.004
Zhang, J., Li, K., Chen, H., Hu, X., Guo, Z., Chen, S., ... & Chen, P. (2023). Retrospective analysis of urinary tract stone composition in a Chinese ethnic minority colony based on Fourier transform infrared spectroscopy. Scientific Reports, 13(1), 13453. DOI: https://doi.org/10.1038/s41598-023-40603-w
Acharya, A., Khanal, M., Maharjan, R., Gyawali, K., Khanal, K., Kshetri, M. B., ... & Lamichhane, H. P. (2024). Experimental FTIR characterization of kidney stones, DFT analysis of CaC2O4 and its interactions with lysozyme. BIBECHANA, 21(3), 311-320. DOI: https://doi.org/10.3126/bibechana.v21i3.68781
Tseregorodtseva, P. S., Budylin, G. S., Zlobina, N. V., Gevorkyan, Z. A., Filatova, D. A., Tsigura, D. A., ... & Shirshin, E. A. (2023, December). Multiwavelength Fluorescence and Diffuse Reflectance Spectroscopy for an In Situ Analysis of Kidney Stones. In Photonics (Vol. 10, No. 12, p. 1353). MDPI. DOI: https://doi.org/10.3390/photonics10121353
Boichenko, E., Paronnikov, M., & Kirsanov, D. (2023). Pilot Study on the Qualitative Analysis of Urinary Stones Using Near-Infrared Spectroscopy and Chemometrics. Engineering Proceedings, 48(1), 64. DOI: https://doi.org/10.3390/CSAC2023-15162
Ozono, C., Hirasawa, I. and Kohori, F. (2017), Shape Change and Growth Behavior of Monosodium Urate Monohydrate in a Gout Model. Chem. Eng. Technol., 40: 1231 1234. 0. DOI: https://doi.org/10.1002/ceat.201600680
Norazmi, N., Rasad, Z. A., Mohamad, M., & Manap, H. (2017), Uric acid detection using UV-Vis spectrometer. IOP Conf. Ser.: Mater. Sci. Eng 257(1), 012031. DOI: https://doi.org/10.1088/1757-899X/257/1/012031
Khalil, A. A. I., Gondal, M. A., Shemis, M., & Khan, I. S. (2015). Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy. Applied optics, 54(8), 2123-2131. DOI: https://doi.org/10.1364/AO.54.002123
Tsung-Jui Lin., Kai-Ting Yen., Chien-Fan Chen., Shuo-Ting Yan., Kuan-Wei Su., & Ya-Ling Chiang, Label-Free Uric Acid Estimation of Spot Urine Using Portable Device Based on UV Spectrophotometry, (2022), Sensors, 22, 3009. DOI: https://doi.org/10.3390/s22083009
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.