A Review of Deep Learning Approaches for Fake Profile Detection on Social Networking Sites
DOI:
https://doi.org/10.32628/IJSRSET2512523Keywords:
Fake profile detection, deep learning, social networking sites, online impersonation, CNN, RNN, transformers, multimodal analysis, cybersecurity, identity theftAbstract
Social networking sites, now with thousands in existence, have ushered in a revolution in digital communication, while also giving rise to serious security threats like fake profile creation and online impersonations. The perpetrators engaged in these deceitful acts use them for cyberbullying, spreading misinformation, and identity theft, among other evils. Traditional detection methods relying on rule-based systems and shallow, machine learning algorithms have had modest success at best against the increasing complexity of fake profiles. Deep learning approaches have emerged in recent years as powerful, complementary alternatives capable of modeling highly complex patterns from large-scale, heterogeneous sources of data. This review paper presents an in-depth evaluation of state-of-the-art deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Autoencoders, and Transformer-based architecture in the domain of fake profile detection. The paper also looks at multimodal methods combining textual, image, behavioral, and network-based features to enhance detection accuracy. Challenges tackled herein include class imbalance, data privacy, adversarial evasion, and real-time implementation.
📊 Article Downloads
References
Aditya, B. L., & Mohanty, S. N. (2023). Heterogenous social media analysis for efficient deep learning fake-profile identification. IEEE Access, 11, 99339-99351. DOI: https://doi.org/10.1109/ACCESS.2023.3313169
Amankeldin, D., Kurmangaziyeva, L., Mailybayeva, A., Glazyrina, N., Zhumadillayeva, A., & Karasheva, N. (2023). Deep Neural Network for Detecting Fake Profiles in Social Networks. Computer Systems Science & Engineering, 47(1). DOI: https://doi.org/10.32604/csse.2023.039503
Ahmad, S., & Tripathi, M. M. (2023). A review article on detection of fake profile on social-media. International Journal of Innovation Research in Computer Science & Technology (IJIRCST) ISSN, 2347-5552. DOI: https://doi.org/10.55524/ijircst.2023.11.2.9
Oulad-Kaddour, M., Haddadou, H., Vilda, C. C., Palacios-Alonso, D., Benatchba, K., & Cabello, E. (2023). Deep learning-based gender classification by training with fake data. IEEE Access, 11, 120766-120779. DOI: https://doi.org/10.1109/ACCESS.2023.3328210
Alsubaei, F. S. (2023). Detection of inappropriate tweets linked to fake accounts on twitter. Applied Sciences, 13(5), 3013. DOI: https://doi.org/10.3390/app13053013
Sukanya, L., Aniketh, J., Abhiman Sathwik, E., Sridhar Reddy, M., & Hemanth Kumar, N. (2023). Racism detection using deep learning techniques. In E3S Web of Conferences (Vol. 391, p. 01052). EDP Sciences. DOI: https://doi.org/10.1051/e3sconf/202339101052
Bordbar, J., Mohammadrezaei, M., Ardalan, S., & Shiri, M. E. (2023). Detecting fake accounts through generative adversarial network in online social media. DOI: https://doi.org/10.21203/rs.3.rs-3710452/v1
Aboud, A., Rokbani, N., Mirjalili, S., Hussain, A., Chabchoub, H., & Alimi, A. M. (2023). A quantum beta distributed multi-objective particle swarm optimization algorithm for twitter fake accounts detection. DOI: https://doi.org/10.36227/techrxiv.19461080
Ojugo, A. A., Akazue, M. I., Ejeh, P. O., Odiakaose, C., & Emordi, F. U. (2023). DeGATraMoNN: Deep Learning Memetic Ensemble to Detect Spam Threats via a Content-Based Processing. Kongzhi yu Juece/Control Decis, 38(01), 667-678.
Siddiqui, F., & Suaib, M. (2023). Enhancing Spammer Fake Profile Detection on Social Media Platforms using Artificial Neural Networks. International Journal of Engineering and Management Research, 13(4), 1-6.
Kanagavalli, N., & Priya, S. B. (2022). Social networks fake account and fake news identification with reliable deep learning. Intell. Autom. Soft Comput, 33(1), 191-205. DOI: https://doi.org/10.32604/iasc.2022.022720
Suganthi, S. T., Ayoobkhan, M. U. A., Bacanin, N., Venkatachalam, K., Štěpán, H., & Pavel, T. (2022). Deep learning model for deep fake face recognition and detection. PeerJ Computer Science, 8, e881. DOI: https://doi.org/10.7717/peerj-cs.881
Wanda, P. (2022). RunMax: fake profile classification using novel nonlinear activation in CNN. Social Network Analysis and Mining, 12(1), 158. DOI: https://doi.org/10.1007/s13278-022-00983-9
Rossi, S., Kwon, Y., Auglend, O. H., Mukkamala, R. R., Rossi, M., & Thatcher, J. (2022). Are deep learning-generated social media profiles indistinguishable from real profiles?. arXiv preprint arXiv:2209.07214. DOI: https://doi.org/10.24251/HICSS.2023.017
Voitovych, O., Kupershtein, L., & Holovenko, V. (2022). Detection of Fake Accounts in Social Media. Кібербезпека: освіта, наука, техніка. Т. 2,№ 18: 86-98. DOI: https://doi.org/10.28925/2663-4023.2022.18.8698
Kadam, N., & Sharma, S. K. (2022). Social media fake profile detection using data mining technique. Journal of Advances in Information Technology Vol, 13(5). DOI: https://doi.org/10.12720/jait.13.5.518-523
Benabbou, F., Boukhouima, H., & Sael, N. (2022). Fake accounts detection system based on bidirectional gated recurrent unit neural network. International Journal of Electrical and Computer Engineering (IJECE), 12(3), 3129. DOI: https://doi.org/10.11591/ijece.v12i3.pp3129-3137
Ali, A. K., & Abdullah, A. M. (2022). Fake accounts detection on social media using stack ensemble system. International Journal of Electrical and Computer Engineering (IJECE), 12(3), 3013-3022. DOI: https://doi.org/10.11591/ijece.v12i3.pp3013-3022
Boahen, E. K., Bouya-Moko, B. E., Qamar, F., & Wang, C. (2022). A deep learning approach to online social network account compromisation. IEEE Transactions on Computational Social Systems, 10(6), 3204-3216. DOI: https://doi.org/10.1109/TCSS.2022.3199080
Cartwright, B., Frank, R., Weir, G., & Padda, K. (2022). Detecting and responding to hostile disinformation activities on social media using machine learning and deep neural networks. Neural Computing and Applications, 34(18), 15141-15163. DOI: https://doi.org/10.1007/s00521-022-07296-0
Singh, V., Shanmugam, R., & Awasthi, S. (2021). Preventing fake accounts on social media using face recognition based on convolutional neural network. In Sustainable Communication Networks and Application: Proceedings of ICSCN 2020 (pp. 227-241). Springer Singapore. DOI: https://doi.org/10.1007/978-981-15-8677-4_19
Kesharwani, M., Kumari, S., & Niranjan, V. (2021). Detecting fake social media account using deep neural networking. International Research Journal of Engineering and Technology (IRJET), 8(7), 1191-1197.
Winston, L., Omoseebi, A., & Collines, J. (2025). Deep Learning Models for Behavior-Based Fake Account Detection.
Bashaddadh, O., Omar, N., Mohd, M., & Khalid, M. N. A. (2025). Machine Learning and Deep Learning Approaches for Fake News Detection: A Systematic Review of Techniques, Challenges, and Advancements. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2025.3572051
Reddy, K. M. S. M. S. (2025). Spammer Detection and Fake user Identification on Social Networks.
Will, I., Omoseebi, A., & Jhon, J. (2025). Graph Neural Networks (GNNs) for Social Media Profile Verification.
Wang, Z., Li, L., He, K., & Zhu, Z. (2025). User Profile Construction Based on High-Dimensional Features Extracted by Stacking Ensemble Learning. Applied Sciences, 15(3), 1224. DOI: https://doi.org/10.3390/app15031224
Habib, A. R. R., Akpan, E. E., Ghosh, B., & Dutta, I. K. (2024, January). Techniques to detect fake profiles on social media using the new age algorithms-A Survey. In 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0329-0335). IEEE. DOI: https://doi.org/10.1109/CCWC60891.2024.10427620
Shah, A., Varshney, S., & Mehrotra, M. (2024). Detection of fake profiles on online social network platforms: performance evaluation of artificial intelligence techniques. SN Computer Science, 5(5), 489. DOI: https://doi.org/10.1007/s42979-024-02839-9
Alharbi, N., Alkalifah, B., Alqarawi, G., & Rassam, M. A. (2024). Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection. Future Internet, 16(10), 367. DOI: https://doi.org/10.3390/fi16100367
Unni, M. V., Jeevananda, S., Kalapurackal, J. J., & Fatma, S. (2024). Enhancing authenticity and trust in social media: an automated approach for detecting fake profiles. Indonesian Journal of Electrical Engineering and Computer Science, 35(1), 292-300. DOI: https://doi.org/10.11591/ijeecs.v35.i1.pp292-300
Deedee, B., Onate, T., & Emmah, V. (2024). Fake Profile Detection and Stalking Prediction on X using Random Forest and Deep Convolutional Neural Networks. Journal Press India, 4(1). DOI: https://doi.org/10.17492/computology.v4i1.2401
Suryawanshi, J., Abdul, S. M., Lal, R. P., Aramanda, A., Hoque, N., & Yusoff, N. (2024). Enhanced Recommender Systems with the Removal of Fake User Profiles. Procedia Computer Science, 235, 347-360. DOI: https://doi.org/10.1016/j.procs.2024.04.035
Lubis, A., Prayudani, S., Hamzah, M. L., Lase, Y., Lubis, M., Al-Khowarizmi, A., & Hutagalung, G. (2024). Deep neural networks approach with transfer learning to detect fake accounts social media on Twitter. Indones. J. Electr. Eng. Comput. Sci, 33, 269. DOI: https://doi.org/10.11591/ijeecs.v33.i1.pp269-277
Venkatesh, S. C., Shaji, S., & Sundaram, B. M. (2024). A fake profile detection model using multistage stacked ensemble classification. Proc Eng Technol Innov, 26, 18-32. DOI: https://doi.org/10.46604/peti.2024.13200
Yigezu, M., Kolesnikova, O., Sidorov, G., & Gelbukh, A. (2024, March). Habesha@ dravidianlangtech 2024: Detecting fake news detection in dravidian languages using deep learning. In Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages (pp. 156-161).
George, N., Sham, A., Ajith, T., & Bastos, M. (2024). Forty Thousand Fake Twitter Profiles: A Computational Framework for the Visual Analysis of Social Media Propaganda. Social science computer review, 08944393241269394. DOI: https://doi.org/10.2139/ssrn.4899259
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.