Intermolecular Interaction for Ternary Mixture of N-Methylmoprphline with Aromatic Hydrocarbons with Determined Densities to Measure Excess Molar Volume
DOI:
https://doi.org/10.32628/IJSRSET2512532Abstract
The determination of excess molar volume, which is dependent on the nature of liquid mixtures as well as intermolecular interactions, is the main emphasis of the presented study. For the mixture of N-methylmorpholine + o-xylene, benzene + N-methylmorpholine (NMM) + toluene+ benzene, and N-methylmorpholine + benzene+ mesitylene, as well as constituent binary mixes of benzene, N-methylmorpholine + N-methylmorpholine + N-methylmorpholine + o-xylene+ toluene, and N-methylmorpholine + mesitylene at 298.15K under atmospheric pressure, excess molar volume was computed from measured data of density over the entire range of mole fraction.
📊 Article Downloads
References
Smiljanić, J. D., Kijevčanin, M. L., Djordjević, B. D., Grozdanić, D. K., & Šerbanović, S. P. (2008). Temperature dependence of densities and excess molar volumes of the ternary mixture (1-butanol+ chloroform+ benzene) and its binary constituents (1-butanol+ chloroform and 1-butanol+ benzene). International Journal of Thermophysics, 29(2), 586-609. DOI 10.1007/s10765-008-0390-4 DOI: https://doi.org/10.1007/s10765-008-0390-4
Goates, J. R., Ott, J. B., & Grigg, R. B. (1981). Excess volumes of n-hexane+ n-heptane,+ n-octane,+ n-nonane, and+ n-decane at 283.15, 298.15, and 313.15 K. The Journal of Chemical Thermodynamics, 13(10), 907-913. https://doi.org/10.1016/0021-9614(81)90071-9. DOI: https://doi.org/10.1016/0021-9614(81)90071-9
Lepori, L., Gianni, P., & Matteoli, E. (2013). The effect of the molecular size and shape on the volume behavior of binary liquid mixtures. Branched and cyclic alkanes in heptane at 298.15 K. Journal of Solution Chemistry, 42(6), 1263-1304. DOI 10.1007/s10953-013-0023-9. DOI: https://doi.org/10.1007/s10953-013-0023-9
Khanlarzadeh, K., & Iloukhani, H. (2011). Application of ERAS-model and Prigogine–Flory–Patterson theory to excess molar volumes for ternary mixtures of (2-chlorobutane+ butylacetate+ isobutanol) at T= 298.15 K. The Journal of Chemical Thermodynamics, 43(11), 1583-1590. https://doi.org/10.1016/j.jct.2011.05.017. DOI: https://doi.org/10.1016/j.jct.2011.05.017
Forghani, F., Iloukhani, H., & Khanlarzadeh, K. (2022). Experimental study and modeling using the PFP theory and the ERAS model of the excess molar volume and isentropic compressibility of dimethylbenzylamine with alkanol mixtures at different temperatures. Journal of Chemical & Engineering Data, 67(2), 297-304. https://doi.org/10.1021/acs.jced.1c00752. DOI: https://doi.org/10.1021/acs.jced.1c00752
Forghani, F., Iloukhani, H., & Khanlarzadeh, K. (2023). Volumetric and acoustic investigation on the binary mixtures of monoethanolamine+ 1-alcohols (C3–C6) at different temperatures from experimental and theoretical points of view. Journal of Solution Chemistry, 52(4), 385-412. https://doi.org/10.1007/s10953-022-01236-1. DOI: https://doi.org/10.1007/s10953-022-01236-1
Awwad, A. M., & Salman, M. A. (1986). Volume of mixtures of nonane isomers with normal nonane and normal hexadecane at 298.15 K; an interpretation in terms of the Flory—Patterson theory. Fluid phase equilibria, 31(1), 105-115. https://doi.org/10.1016/S0378-3812(86)87034-0. DOI: https://doi.org/10.1016/S0378-3812(86)87034-0
Awwad, A. M., Hassan, F. A., & Salman, M. A. (1987). Volumes of mixing of decane isomers with normal hexadecane at 298.15 K. An interpretation in terms of the Van-Patterson theory. Fluid phase equilibria, 38(3), 291-298. https://doi.org/10.1016/0378-3812(87)85006-9. DOI: https://doi.org/10.1016/0378-3812(87)85006-9
Razzaq, L., Farooq, M., Mujtaba, M. A., Sher, F., Farhan, M., Hassan, M. T., ... & Imran, M. (2020). Modeling viscosity and density of ethanol-diesel-biodiesel ternary blends for sustainable environment. Sustainability, 12(12), 5186. https://doi.org/10.3390/su12125186. DOI: https://doi.org/10.3390/su12125186
Gómez-Ibáñez, J. D., & Wang, T. C. (1966). The excess volume of binary mixtures of trans-decalin with cyclohexane and with n-alkanes. The Journal of Physical Chemistry, 70(2), 391-395. https://doi.org/10.1021/j100874a012. DOI: https://doi.org/10.1021/j100874a012
Li, D., Wu, Q., Liu, L., Guo, M., & Wang, H. (2018). Density, Viscosity and Volatility of Binary Mixtures of Isopropyl Ether and exo-Tetrahydrodicyclopentadiene. Journal of Solution Chemistry, 47(3), 544-559. https://doi.org/10.1007/s10953-018-0736-x. DOI: https://doi.org/10.1007/s10953-018-0736-x
Zhao, X., Mi, J., Dai, Y., He, G., Guo, Y., & Fang, W. (2020). Density and viscosity measurements on the ternary system of exo-tetrahydrodicyclopentadiene (1)+ n-decane (2)+ iso-butanol (3) and corresponding binary systems. Journal of Chemical & Engineering Data, 65(5), 2527-2539. https://doi.org/10.1021/acs.jced.9b01171. DOI: https://doi.org/10.1021/acs.jced.9b01171
Jabrou, S. N., Radhi, M. M., Al-Mulla, E. A. J., & Azooz, E. A. (2024). Rifampicin nanopatricles: thermodynamic properties in KCl electrolyte using cyclic voltammetry. Nano Biomed. Eng., 16, 128. DOI: 10.26599/NBE.2024.9290046 DOI: https://doi.org/10.26599/NBE.2024.9290046
Abdullah, W. R., & Jabrou, S. N. (2022). Improving Ionic Exchange Process of Potassium in Poor Soils by Bentonite. In IOP Conference Series: Earth and Environmental Science (Vol. 961, No. 1, p. 012098). IOP Publishing. DOI 10.1088/1755-1315/961/1/012098. DOI: https://doi.org/10.1088/1755-1315/961/1/012098
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.